RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI"

Transkrypt

1 RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI

2 Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja 1 Jeżeli istnieje granica ( ( lim ( to nazywamy ją pocodną unkcji w punkcie Jeśli granica ta nie istnieje, to unkcja ( nie posiada pocodnej w punkcie Pocodną unkcji ( w punkcie oznaczamy też symbolem y ( ' Interpretacja geometryczna pocodnej unkcji (

3 Z interpretacji geometrycznej pocodnej unkcji wynika, że ( ( tgβ, gdzie β jest kątem nacylenia siecznej krzywej y ( przecodzącej przez punkty, ( i, (, do osi OX ( ( Biorąc granicę wyrażeń znajdującyc się po obu stronac powyższej równości przy, otrzymujemy tgα, gdzie α jest kątem nacylenia stycznej do krzywej y ( poprowadzonej w punkcie, ( natomiast tgα ( do osi OX jest współczynnikiem kierunkowym tej stycznej.

4 Wniosek 1 Równanie stycznej do krzywej, poprowadzonej w punkcie o odciętej, ma postać gdzie y y (. y (, Deinicja 2 Funkcję ( posiadającą pocodną w punkcie nazywamy różniczkowalną w tym punkcie. Jeśli unkcja ( posiada pocodną w każdym punkcie zbioru D to nazywamy ją różniczkowalną w tym zbiorze. Znajdowanie pocodnyc unkcji nazywamy różniczkowaniem. Pocodną oznaczamy także symbolem y' ( lub krótko y'.

5 Przykład Z deinicji pocodnej wyprowadzić wzory na pocodną jeśli 1. ( sin, R 2. ( log, a >, a 1, > a Podobnie można wyprowadzić wzory na pocodne innyc unkcji. Twierdzenie 1 (wzory podstawowe Prawdziwe są następujące wzory: (Tab.1

6 Twierdzenie 2 (podstawowe Jeżeli unkcje ( oraz ( to w zbiorze tym [ a ( ] a ( g są różniczkowalne dla D, [ ( g( ] ( g ( [ ( g( ] ( g( ( g ( ( ( g( ( g ( g( g 2 ( Jeżeli ponadto 1 jest różniczkowalna na zbiorze D g, to dla ( g( g( g ( [ ] ( D,

7 Deinicja 3 Przyrostem unkcji y ( w punkcie odpowiadającym przyrostowi d argumentu nazywamy liczbę y( ( ( d (. Deinicja 4 Różniczką unkcji ( przyrostowi d y argumentu w punkcie odpowiadającym, nazywamy liczbę dy ( d ( d. Pomiędzy przyrostem i różniczką unkcji zacodzi następująca przybliżona zależność d (, ( skąd otrzymujemy następujące przybliżenie ( d ( d. Interpretacja geometryczna różniczki unkcji: (

8 Deinicja 5 Jeżeli pocodna y ' y ( unkcji jest unkcją ( y '' ( ' różniczkowalną w zbiorze D, to jej pocodną nazywamy pocodną rzędu drugiego unkcji y ( w tym zbiorze i oznaczamy symbolem y' ' lub symbolem ' Podobnie deiniujemy pocodne wyższyc rzędów unkcji y (, czyli pocodną n-tego rzędu unkcji y (, nazywamy pocodną jej pocodnej n-1-go rzędu, tzn. ( n ( n 1 ( n ( n 1 y ( y ' lub ( ( ( ' dla n 1. Obok oznaczeń pocodnyc y', y'', y''', y (4,..., y ( n,... L,, ', '', (,..., ( 4 ( n stosujemy także oznaczenia dy, d y d y d ( d ( d (,,... 2 d d d 3 oraz,,, d d d,...

9 Twierdzenie 3 (reguła de L Hospitala Jeżeli i Funkcje (, g(, i g są określone w pewnym ii sąsiedztwie punktu lim ( lim iii Istnieje granica to istnieje granica i ponadto lim g( lim lim g' ( ( g( ( g( albo lim ( ± i lim g( (właściwa albo niewłaściwa, lim g ±

10 Uwaga Twierdzenie de L Hospitala służy do obliczania granic ilorazów będącyc tzw. symbolami nieoznaczonymi typu oraz typu Jest ono słuszne także w przypadku granic jednostronnyc w punkcie tzn. gdy oraz w przypadkac gdy zmierza do ±, lub Twierdzenie 4 (o monotoniczności unkcji Jeśli > dla każdego ( a, b, to ( jest rosnąca w tym przedziale, natomiast jeśli < dla każdego ( a, b,to jest malejąca w tym przedziale, jeżeli dla każdego ( ( a, b ( ( a, b., to jest stała w przedziale Uzasadnienie: Prawdziwość twierdzenia wynika z interpretacji geometrycznej pocodnej (styczna do wykresu ma dodatni współczynnik kierunkowy dla unkcji rosnącej

11 Deinicja 6 Funkcja ( ma w punkcie maksimum lokalne, gdy dla każdego z pewnego sąsiedztwa tego punktu zacodzi nierówność ( ( Funkcja ( ma w punkcie minimum lokalne, gdy dla każdego z pewnego sąsiedztwa tego punktu zacodzi nierówność ( ( Maksima i minima nazywamy ekstremami. Zamiast ekstremum lokalne mówimy także krótko ekstremum.

12 Twierdzenie 5 (warunek konieczny istnienia ekstremum Jeżeli unkcja ( ma ekstremum w punkcie i ma w tym punkcie pocodną pierwszego rzędu, to. Wniosek Funkcja może mieć ekstrema tylko w punktac, w któryc jej pocodna jest równa zeru, albo w punktac w któryc jej pocodna nie istnieje.

13 Twierdzenie 6 (pierwszy warunek wystarczający istnienia ekstremum Jeżeli unkcja ( posiada w pewnym sąsiedztwie punktu pocodną oraz, to unkcja ( ma w punkcie i minimum lokalne y min (, gdy < dla < oraz > dla > ii maksimum lokalne y ma (, gdy > dla < oraz < dla > (w pewnym sąsiedztwie punktu Uwaga Powyższe twierdzenie oznacza, że na to aby w punkcie unkcja ( posiadała ekstremum lokalne wystarcza aby pocodna pierwszego rzędu była równa zero w tym punkcie i zmieniała w nim znak. Przykład Wyznaczyć przedziały monotoniczności i ekstrema unkcji y e 4 2 2

14 Twierdzenie 7 (drugi warunek wystarczający istnienia ekstremum Jeżeli unkcja ( ma w pewnym otoczeniu punktu pocodne ( do rzędu n, pocodna jest ciągła w punkcie, n jest n ( liczbą parzystą, a ponadto ( k ( ( dla k 1,2,..., n 1 oraz n (, to unkcja ( ma w punkcie ( i maksimum lokalne, gdy n ( <, ( ii minimum lokalne, gdy n ( >. Deinicja 7 Ekstremum absolutnym unkcji ( w przedziale domkniętym [a,b] nazywamy jej wartość największą lub odpowiednio wartość najmniejszą w tym przedziale. Wniosek Funkcja ciągła określona w przedziale domkniętym osiąga ekstrema absolutne tylko w punktac, w któryc ma ekstrema lokalne lub na końcac tego przedziału.

15 Deinicja 8 Jeśli styczna do krzywej w każdym punkcie przedziału (a,b znajduje się pod tą krzywą, to krzywą nazywamy wypukłą w dół w tym przedziale. Jeśli natomiast styczna do krzywej w każdym punkcie przedziału (a,b znajduje się nad tą krzywą, to krzywą nazywamy wypukłą w górę w tym przedziale. Twierdzenie 8 (wypukłość krzywej Jeżeli ' > dla każdego ( a, b, to krzywa y ( jest wypukła w dół w przedziale ( a, b ' < ( a, b y ( w górę w przedziale ( a, b dla każdego, to krzywa jest wypukła

16 Deinicja 9 Punkt P (, ( nazywamy punktem przegięcia krzywej y jeżeli i istnieje styczna do tej krzywej w punkcie P ii krzywa ta jest wypukła w pewnym lewostronnym sąsiedztwie punktu oraz jest wklęsła w pewnym prawostronnym sąsiedztwie tego punktu, albo na odwrót. ( Przykład (brak zgodnego z deinicją punktu przegięcia ( ln

17 Twierdzenie 9 (warunek konieczny istnienia punktu przegięcia Jeśli i unkcja ( ma w pewnym otoczeniu punktu pocodną 2-go rzędu ' ciągłą w tym punkcie ii punkt P (, ( jest punktem przegięcia krzywej y ( to '. Twierdzenie 1 (warunek wystarczający istnienia punktu przegięcia Jeśli i unkcja ( ma w pewnym otoczeniu punktu pocodną 2-go rzędu ' ciągłą w tym punkcie, ii ' ' ( zmienia znak w punkcie, to P (, ( jest punktem przegięcia krzywej y (

18 Twierdzenie 11 (drugi warunek wystarczający istnienia punktu przegięcia ( ( n ( Jeżeli unkcja ma w pewnym otoczeniu punktu pocodne do rzędu n, pocodna jest ciągła w punkcie, n jest liczbą nieparzystą, a ponadto ( k ( ( dla k 1,2,..., n 1 oraz n (, to jest punktem przegięcia unkcji (.

19 Deinicja 1 Prostą o równaniu y m k nazywamy asymptotą ukośną (poziomą, gdy m gdy m ( lim, (analogicznie dla k lim( ( m Deinicja 11 Prostą o równaniu nazywamy asymptotą pionową, gdy c lim c ( lub lim c (

20 Badanie przebiegu zmienności krzywej 1. Określenie dziedziny (punkty nieciągłości 2. Punkty przecięcia z osiami układu 3. Granice na krańcac dziedziny, prawostronne i lewostronne w punktac nieciągłości 4. Asymptoty ukośne 5. Monotoniczność i ekstrema 6. Przedziały wypukłości i punkty przegięcia 7. Szkic wykresu Przykłady: 1. ( 3 (1 2 D : R \ { 1} 2. g( 2 arcsin 1 2 D g : R

21 Twierdzenie Rolle a Założenia: (i y( jest unkcją ciągłą w przedziale [a,b] (ii y( jest unkcją różniczkowalną w każdym punkcie przedziału (a,b (iii (a(b Teza: c ( a, b : c Twierdzenie Caucy ego Założenia: (i y(, yg( są unkcjami ciągłymi w przedziale [a,b] (ii y(, yg( są unkcjami różniczkowalnymi w każdym punkcie przedziału (a,b (iii g ( dla dowolnego ( a, b Teza: ( b ( a c ( a, b : g( b g( a c g' ( c

22 Twierdzenie Lagrange a Założenia: (i y( jest unkcją ciągłą w przedziale [a,b] (ii y( jest unkcją różniczkowalną w każdym punkcie przedziału (a,b Teza: ( b ( a c ( a, b : c b a Twierdzenie Taylora Założenia: (i y( jest unkcją n1-krotnie różniczkowalną w każdym punkcie przedziału (a,b ( 1 (ii n ( ciągła w (a,b Teza: c ( a, b: ( b n i ( a ( b a i! ( i i ( c ( b a n 1! ( n 1 ( n 1

23 Wyrażenie R n ( b, a ( c ( b a n 1! ( n 1 ( n 1 nazywamy resztą w postaci Lagrange a. Jeżeli zastosujemy twierdzenie Taylora do unkcji na odcinku [, ], to otrzymane wyrażenie nazywane jest wzorem Maclaurina: ( ( ( n 1 n i ( c ( n 1 i ( i i! n 1! Przykład Rozwinąć według wzoru Taylora unkcję (ln w przedziale [1,2] oraz dla n3 Przykład Obliczyć e z dokładnością do,1

24 Krzywizna krzywej Założenia: (i y( jest unkcją 2-krotnie różniczkowalną w każdym punkcie przedziału (a,b (ii ( ciągła w [a,b] (<a,b> Wiemy, że równanie stycznej do krzywej y( w punkcie gdzie ma postać: (, (, y ( a, b ( ( Prostopadłą do stycznej w punkcie styczności nazywamy normalną do krzywej y( i jej równanie ma postać: y 1 (, (

25 Niec (, (, gdzie ( a, b będzie punktem na krzywej y(. Normalna w punkcie ma postać: y (, ( 1 ( ( Niec normalne do krzywej y( poprowadzone w punktac (, ( (, ( i przecinają w Po rozwiązaniu układu równań: y y ( ( 1 ( 1 ( się w punkcie ( w, y Rys.:(

26 Otrzymujemy: ] ( ( [ ( ] ( ( [ y w w co można zapisać w postaci: y w w ( ( 1 ( ( ( 1

27 Przecodząc do granicy przy otrzymujemy współrzędne środka krzywizny: y s s ( [ ] 1 ' 1 [ ] 2 ' (, ( Odległość punktów i s nazywamy promieniem krzywizny: ( s, y 2 r [ [ ] 2 1 ] ' 3 2

28 Krzywizną krzywej y ( w punkcie (, ( Nazywamy odwrotność promienia krzywizny w tym punkcie: K 1 r ' [ [ ] ] Przykład Znaleźć równanie okręgu krzywiznowego w punkcie, w którym parabola y ma największą krzywiznę

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Rachunek różniczkowy funkcji f : R R

Rachunek różniczkowy funkcji f : R R Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ EAIiIB-Inormatyka -Wykład 4- dr Adam Ćmiel cmiel@agedupl RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Niec : R D R Niec D będzie punktem skupienia zboru D Oznaczenia: Ot,δ) K,δ) -δ, +δ) D ; S,δ) Ot,δ)-{

Bardziej szczegółowo

Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności

Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji

Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko

Bardziej szczegółowo

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ FUNKCJI

ZASTOSOWANIA POCHODNEJ FUNKCJI Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w

Bardziej szczegółowo

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34 Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

( ) Pochodne. Załómy, e funkcja f jest okrelona w pewnym otoczeniu punktu x 0. Liczb

( ) Pochodne. Załómy, e funkcja f jest okrelona w pewnym otoczeniu punktu x 0. Liczb Pocodne Załómy, e unkcja jest okrelona w pewnym otoczeniu punktu. Liczb ( + ) ( ) nazywamy ilorazem rónicowym unkcji w punkcie dla przyrostu. Pocodn ( ) unkcji w punkcie nazywamy granic ilorazu rónicowego,

Bardziej szczegółowo

Rachunek Różniczkowy

Rachunek Różniczkowy Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem

Bardziej szczegółowo

Pochodna i jej zastosowania

Pochodna i jej zastosowania Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji 4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo

Bardziej szczegółowo

Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim

Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja

Bardziej szczegółowo

Wykłady z matematyki - Pochodna funkcji i jej zastosowania

Wykłady z matematyki - Pochodna funkcji i jej zastosowania Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x . Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )

Bardziej szczegółowo

1 Pochodne pierwszego rzędu

1 Pochodne pierwszego rzędu Pocodne pierwszego rzędu. Podstawowe definicje Def. Niec funkcja f będzie określona w pewnym przedziale otwartym zawierającym punkt a. Ilorazem różnicowym funkcji f w punkcie a dla przyrostu nazywamy funkcję

Bardziej szczegółowo

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji

SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO

WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO KOGNITYWISTYKA UAM, 016 017 JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM pogon@amu.edu.pl Dzisiejszy wykład

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy

Bardziej szczegółowo

Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że

Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Definicja Ilorazem różnicowym funkcji f w punkcie a nazywamy

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maciej Burnecki strona główna Spis treści I Zadania Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy 5 6 Całki

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π

Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie 1. Styczne do krzywej: (a) y = sin x x 0 = π/6 (b) y = x 3 2x 2 + x 1 x 0 = 1 Tą styczną to już gdzieś objaśniałem. Jest to prosta o równaniu

Bardziej szczegółowo

4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość

4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość 4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644)

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644) LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA MAT 67, 644) Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Dwie dodatkowe listy: POWTÓRKA i POWTÓRKA to przygotowanie do kolokwiów.

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Asymptoty funkcji. Pochodna. Zastosowania pochodnej

Asymptoty funkcji. Pochodna. Zastosowania pochodnej Temat wykładu: Asymptoty unkcji. Pochodna. Zastosowania pochodnej Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Asymptoty unkcji Zagadnienia 2. Pochodna

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Egzamin podstawowy (wersja przykładowa), 2014

Egzamin podstawowy (wersja przykładowa), 2014 Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych

LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych LISTA 0 materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych W zadaniach 0. 0.5 n N, natomiast a, b,, y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

Zastosowania pochodnych

Zastosowania pochodnych Zastosowania pochodnych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 SZACOWANIE NIEPEWNOŚCI POMIAROWEJ Przykład: objętość kuli Kulka z łożyska tocznego ma średnicę 2,3 mm, co oznacza, że objętość

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo