LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych

Wielkość: px
Rozpocząć pokaz od strony:

Download "LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych"

Transkrypt

1 LISTA 0 materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych W zadaniach n N, natomiast a, b,, y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia i wykonywane przekształcenia mają sens. 0.. Przypomnieć kolejność wykonywania działań w wyrażeniach bez nawiasów oraz w wyrażeniach z nawiasami. Obliczyć wartość wyrażenia: : 8. Wstawić nawiasy tak, aby wartość otrzymanego wyrażenia była równa., b), c) Uzupełnić i zapamiętać wzory skróconego mnożenia : a + b) =, b) a + b) =, c) a + b)a b) =, d) a + b)a ab + b ) =. Czy można w powyższych wyrażeniach zastąpić b przez b? Co otrzymamy? Uprościć wyrażenia wymierne: a 6ab + b 6a 6b, b) , c) a a 4, d) + +, e) + 4 +, f) + 4y + y, g) y Przypomnieć i zapamiętać prawa działań na potęgach. Zapisać wyrażenia w prostszej postaci n + n+ 4 n, b) Przekształcić wyrażenie ) n+ 8) n n, b b a a a, w którym a, b > 0, do prostszej postaci, a na- i b =. stępnie obliczyć jego wartość dla a = 7 n 9 n+ + n Wykonać działania. Wynik zapisać w najprostszej postaci. c) b ay + a a by + b, b) a b + ab a b 6 4 ) ), d) b a a + ab + b, W podanych wyrażeniach usunąć niewymierność z mianownika d) 4 + +, b) n n +, c), n + 5n + 4 4n + a b a b, e) + +, f) n n + n +. Jolanta Sulkowska

2 LISTA. Elementy logiki.. Zdanie logiczne. Forma zdaniowa. Kwantyfikatory. Dla zdań, będących zdaniami logicznymi, podać ich wartość logiczną. 5 =, d) 7 < 0, g) + = +, R R {0, } b) 6 4, e) R 7 < 0, h) y = 0, R y R c) 7 < 0, f) R {0, } + = +, i) R y R y = 0... Negacja. Równoważność. Prawa de Morgana dla koniunkcji i alternatywy. Działania na zbiorach. Zapisać przy użyciu spójników logicznych i, lub rozwiązania równań oraz nierówności. Zaznaczyć na płaszczyźnie zbiory punktów, których współrzędne spełniają podane warunki. + )y ) = 0, b) + )y ) 0, c) + )y ) > 0, d) 4y < 0, e) a + b a b = 0, f) a + a b + > 0, a + b g) a + b 0, h) a + b a + b Implikacja. Twierdzenie. Prawo kontrapozycji. A) Prawdziwe jest twierdzenie: Jeśli liczba naturalna jest podzielna przez, to jest podzielna przez. Wskazać założenie oraz tezę twierdzenia. Na podstawie powyższego twierdzenia podać: warunek wystarczający podzielności przez. Dlaczego nie jest to warunek konieczny? b) warunek konieczny podzielności przez. Dlaczego nie jest to warunek wystarczający? c) Liczba naturalna nie jest podzielna przez. Czy twierdzenie pozwala wyciągnąć wniosek o podzielności tej liczby przez? d) Liczba naturalna jest podzielna przez. Czy twierdzenie pozwala wyciągnąć wniosek o podzielności tej liczby przez? e) Liczba naturalna nie jest podzielna przez. Czy twierdzenie pozwala wyciągnąć wniosek o podzielności tej liczby przez? f) Sformułować warunek konieczny i wystarczający podzielności przez. B) George Bernard Shaw twierdził: Przekłady są jak kochanki - wierne nie są piękne, piękne nie są wierne. Czy wg Bernarda Shaw przekład wierny nie jest piękny, b) jeśli przekład nie jest piękny, to jest wierny, c) jeśli przekład jest piękny, to nie jest wierny, d) jeśli przekład nie jest wierny, to jest piękny, e) żaden przekład nie może być zarazem wierny i piękny?

3 C) Niech, y R. Prawdziwa jest implikacja: Wskazać założenie oraz tezę twierdzenia. > 0 i y > 0) = y > 0). Wiadomo, że α > i β >. Czy twierdzenie pozwala wyciągnąć wniosek o znaku iloczynu α ) β + )? A o znaku iloczynu α β? Podać przykłady. b) Wiadomo, że ab > 0. Czy twierdzenie pozwala wyciągnąć wniosek o znaku liczby a? Podać przykłady. c) Wiadomo, że uv 0. Jaki wniosek o liczbach u i v pozwala wyciagnąć twierdzenie?.4. Prawa de Morgana dla kwantyfikatorów. Zapisać w równoważnej postaci zdania: =, b) c) d) R <0 = 4 ), n + n M R n N ɛ>0 n 0 N n N < M, ) n n > n 0 ) = n + 5 < ɛ. Zagadnienia dotyczące podstaw logiki, a także praw działań algebraicznych, funkcji elementarnych, rozwiązywania równań i nierówności, można powtórzyć korzystając z jednego z podręczników:. M.Gewert, Z.Skoczylas, Wstęp do analizy i algebry. Teoria, przykłady, zadania, Oficyna Wydawnicza GiS, Wrocław W. Żakowski, Algebra i analiza matematyczna dla licealistów, WNT, Warszawa 999. Jolanta Sulkowska, zad..b Marek Zakrzewski

4 LISTA. Powtórzenie i uzupełnienie wiadomości o funkcjach na ćwiczenia).. Wyznaczyć dziedziny naturalne funkcji. f) = + + 9, b) f) = 6, c) f) =, d) f) =... Przekształcając wykres odpowiedniej funkcji liniowej narysowć wykres podanej funkcji. Odczytać z wykresu zbiór wartości. f) = 4, b) f) = 4, c) f) = , d) f) = { + dla dla >... Związek między temperaturą C wyrażoną w C, a temperaturą F w F opisuje funkcja liniowa F = ac + b. Wyznaczyć współczynniki a, b, jeśli 0 C to F, a 00 C to F. Jaką temperaturę wskaże termometr wyskalowany w F, jeśli mamy 7 C?.4. Przekształcając wykres funkcji y = a narysować wykres funkcji y = f). Odczytać z wykresu zbiór wartości. f) = 4 + 5, b) f) = +, c) f) = 4 4, d) f) = sgn )..5. Przekształcając wykres funkcji y = a lub y = a narysować wykres funkcji y = f). Odczytać z wykresu zbiór wartości. f) =, b) f) = +, c) f) = ), d) f) = Napisać wzory określające funkcje złożone f g, g f, f f, g g dla podanych funkcji f i g. Naszkicować wykresy funkcji y = fg)) oraz y = gf)). f) =, g) =, b) f) =, g) = 4, c) f) =, g) = +, d) f) =, g) = sgn..7. Zaproponować przedstawienie funkcji złożonych w postaci g h. Czy jest tylko jedna para funkcji g, h takich, że f = g h? f) = + 6, b) f) = 4 +, c) f) = 4 +.

5 .8. Obliczyć log, log 0,0, log log 8, log 5 + 0,5 log 64, log tg π 6, ln e, log, log 5 6, ) log, e ln 0, e ln 0, log log Zaznaczyć na płaszczyźnie zbiór punktów, których współrzędne, y) spełniają podany warunek log y = log + log, b) log 0,5 y = log 0,5 + ), c) log y = log + log 0,5..0. Narysować wykresy funkcji f) =, ) b) f) = c) f) = + e, d) f) = e, e) f) = log ), f) f) = log0,5, g) f) = ln, h) f) = ln... Rozwiązać równania i nierówności ) ) 5 ) 5 =, 4 b) = 5 +, c) 5 <, d) log =, e) log + ) log >, f) ln + ln... Wyprowadzić wzór określający funkcję odwrotną do funkcji f. Narysować w jednym układzie współrzędnych wykresy funkcji y = f) i y = f ). f) = log + ), b) f) =, c) f) =, d) f) = + dla, e) f) = + dla... Wykorzystując okresowość funkcji i koło trygonometryczne obliczyć wartości wyrażeń cos π + sin 4 π, b) sin π + sin π, c) cos π + cos 6 π, d) sin 9 ) 4 π + cos ) 4 π, e) sin 7 7 π + cos π, f) tg0 π + ctg9 π..4. Udowodnić tożsamości. Określić ich dziedziny. cos = + tg, b) sin = tg + tg, c) cos = tg + tg, d) sin = tg + tg, e) + tg + tg + tg = sin + cos, f) sin 4 + cos 4 = 0,5 sin. cos

6 .5. Krzywą daną równaniem y = a sinb + c) + d dla ustalonych parametrów a 0, b 0, c, d nazywamy sinusoidą. Uzasadnić, że każda z poniższych krzywych jest sinusoidą i narysować ją. y = sin cos, b) y = sin + cos ), c) y = cos..6. Narysować wykres funkcji y = f). Odczytać z wykresu okres podstawowy oraz zbiór wartości funkcji. f) = cos + π ), b) f) = sin + sin, c) f) = tg, d) f) = ctgπ)..7. Rozwiązać równania i nierówności. cos = 0, b) sin + π ) =, c) tg =, d) sin + π ) 0, 4 e) cos > 0, f) ctg <..8. Obliczyć wartości wyrażeń w = arcsin arccos + arctg, jeśli arcctg = π 6 ; b) w = arcsin ) + arccos + arctg, jeśli arccos = π ; c) tg arccos ) ; d) sin arcsin 5 + arcsin 8 ) Rozwiązać równania wykorzystując funkcje cyklometryczne sin =, b) sin = 4, c) cos + π ) = 5, d) cos =, e) tg = 5. 4 Wszystkie wiadomości szkolne można powtórzyć i uzupełnić korzystając z podręcznika: M.Gewert, Z.Skoczylas, Wstęp do analizy i algebry. Teoria, przykłady, zadania, Oficyna Wydawnicza GiS, Wrocław 009. Jolanta Sulkowska

7 LISTA na ćwiczenia) Ciągi liczbowe.. Uzasadnić, że podane ciągi są monotoniczne i ograniczone. a n = e) e n = n n +, b) b n = n n +, c) c n = n!) n)!, d) d π n = sin n +, n + ), f) f n+ n = n + 8 n +, g) g n = n.. Korzystając z odpowiedniej definicji granicy ciagu liczbowego, uzasadnić, że n n lim n + =, n + b) lim n n n + 4 = +, c) n lim n +... Uzasadnić, podając odpowiednie przykłady, że poniższe wyrażenia są nieoznaczone 0 0,, 0,,, 0, Obliczyć granice ciągów liczbowych. a n = n n + 4, b) b n = n + n 8, c) c n = n + n n + 5 n + n +, d) d n = n + ) 8 n 4 + 7) 6, e) e n = n + n + 7 n n, f) f n = 8n+ + n n+ + n + 4, g) g n = n n, h) h n = n + 8 n +, i) i n = n + 4n + n +, j) j n = n + n +, k) k n = 9 n + 4 n + 9 n +, l) l n = n 0 n n 9 +, ) n + 4 n+ n m) m n = 7 n 5 n 9 n , n) m n =, o) o n =, n + n + ) n + n ) 4n + n+6 n + n ) n p) p n =, r) r n =, s) s n =. n + 5 n 5 n + n.5. Dla danego ciągu a n ) dobrać ciąg b n ) postaci b n = n p lub b n = α n tak, aby ciągi a n ) i b n ) a n były tego samego rzędu. Mówimy, że ciągi a n ), b n ) są tego samego rzędu, jeśli lim = k, n b n dla pewnej liczby dodatniej k.) a n = d) a n = n + 4n +, b) a n = n n + 7, c) a n = n + 9 n +, n +, e) a n n = n 4 n + 5, f) a 4 n+ n n = 5 n+ +. n Podobne zadania także rozwiązane) można znaleźć w skrypcie: M.Gewert, Z.Skoczylas, Analiza matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 008, rozdział. ) n Jolanta Sulkowska

8 LISTA 4 Granice funkcji. Asymptoty. Funkcje ciągłe na ćwiczenia) 4.. Narysować wykresy funkcji spełniających wszystkie podane warunki f0) =, b) g0) = 4, c) lim h) =, lim lim f) = +, lim lim g) = 0, lim f) =, lim 0 g) = +, lim h) nie istnieje, lim 0 f) =, lim g) = 0, lim + h) h0), lim f) = π; + g) + nie istnieje; h) = +, h) < Obliczyć granice lim + +, b) lim + e) lim, f) lim + 8, c) lim 4, e, g) lim + + +, 8 d) lim 4, h) lim , sin π i) lim 0, j) lim 0 sin, k) lim + tg tg, l) lim π cos sin Uzasadnić, że podane granice funkcji nie istnieją lim 0,5 4, b) lim 0 /, c) lim π sgnsin ), d) lim Korzystając z odpowiednich twierdzeń o trzech funkcjach, o iloczynie funkcji ograniczonej i funkcji zbieżnej do zera, o dwóch funkcjach) wyznaczyć granice lim cos, b) lim 0 + sin + sin, c) lim + + cos, 4.5. Narysować wykresy funkcji spełniających wszystkie podane warunki + sin d) lim. 0 + prosta = jest asymptotą pionową obustronną funkcji f, y = jest asymptotą poziomą w, y = + jest asymptotą ukośną w + ; b) prosta = jest asymptotą pionową lewostronną funkcji g i nie jest asymptotą pionową prawostronną, funkcja g nie ma asymptoty w, g) = ; lim + c) prosta = 0 jest asymptotą pionową obustronną funkcji h, lim h) nie istnieje, 0 lim [h) + ] = 0, lim [h) + ] = 0. +

9 4.6. Wyznaczyć wszystkie asymptoty funkcji f f) = 8 + 4, b) f) = 6, c) f) = 8, d) f) = e e, e) f) =, f) f) = cos π Czy można dobrać parametry a, b R tak, aby podana funkcja była ciągła na R. Wykonać rysunek. f) = { + dla < 0 a dla 0, b) f) = { arctg dla a + b dla >, 4 c) f) = dla a dla =, d) f) = + dla a dla = b dla = Uzasadnić, korzystając z twierdzenia Darbou, że równanie ma rozwiązanie we wskazanym przedziale. Podać graficzną interpretację równania. W którym przykładzie rozwiązanie jest jednoznaczne? Podać rozwiązanie równania z przykładu d) z błędem nie przekraczającym 0,5. sin =, 0, π ); b) e = ),, ; c) = ln, 0, + ); d) + 6 = 0,, + ); e) 0 sinπ) = +, ), ; f) 5 cosπ) =,, ). Podobne zadania także rozwiązane) można znaleźć w skrypcie: M.Gewert, Z.Skoczylas, Analiza matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 008, rozdział. Jolanta Sulkowska

10 POWTÓRKA.. Naszkicować wykresy funkcji. f) = 4, b) f) =, c) f) = 4 + 7, d) f) =, e) f) =, f) f) = log ), g) f) = + tg, h) f) = cos + π ), i) f) = sin sin, j) f) = ctg ctg, k) f) = π arctg, l) f) = π + arcsin... Wyznaczyć dziedzinę funkcji. f) = , b) f) =, c) f) = ln sin, 4 d) f) = 5 log ), e) f) =, f) f) = tg + π ), 5 g) f) = ctg 4, h) f) = e, i) f) = arcsin ln. π 6arctg.. Rozwiązać równania i nierówności. ) < + ), b) 4 5 4, c) 8, d) e =, e) >, f) ln <, g) sin + π ) 0, h) cos =, i) tg = Uzasadnić tożsamość trygonometryczną i podać jej dziedzinę. cos tg + ctg) = sin, b) tg ctg = cos sin, c) sin cos = ctg..5. Napisać wzory określające funkcje złożone f g, g f oraz naszkicować ich wykresy. f) = 4, g) =, b) f) = e, g) = +, c) f) = log 0,5, g) = +, d) f) = cos, g) = 0,5, e) f) = sin + π ), g) =, f) f) =, g) =. 4

11 .6. Wyprowadzić wzór funkcji odwrotnej do funkcji f. Naszkicować w jednym układzie współrzędnych wykresy funkcji y = f) i y = f ). f) = 4, b) f) = +, c) f) = +, d) f) = ln + ), e) f) = + dla, f) f) = + dla..7. Uzasadnić, że ciąg a n ) jest monotoniczny od pewnego miejsca) i ograniczony a n = n + n + 4, d) a n = cos b) a n = n + 4 n 5 n, c) a n = n n + )!, π 4n + 7, e) a n = n + 4 n, f) a n = n..8. Obliczyć granice ciągów liczbowych: a n = 5n + 4 4n + 5, b) a n = n+ + 6 n 5 4 n n, c) a n = 4n + n 4 n + 4, d) a n = 7 n+4 9 n+7, e) a n = g) a n = + n n, f) a n = n n + n + 9, n n ) n+ ) + n n, h) a n n =, i) a n = + n n + j) a n = π n e n, k) a n = ) n + 5 5n, n + arctgn + ) + arcctgn, l) a n = ln4n + 5) lnn + )..9. Naszkicować wykresy funkcji spełniających wszystkie podane warunki lim f) =, lim 0 + f) = +, lim f) = +, f jest funkcją nieparzystą; + b) prosta y = jest asymptotą poziomą w, prosta = 0 jest asymptotą pionową obustronną, lim g) nie istnieje, g jest funkcją parzystą; c) lim [h) + ] = 0, lim h nie jest ciągła w punkcie 0 = 0. h) =, lim h) =, lim + h) =, +

12 .0. Obliczyć granice funkcji: lim, b) lim e) i) lim + lim + +, f) lim 4 + sin + π, sin j) lim π π,, c) lim + +, g) lim 4 + k) lim 0 5, d) lim, 9 9 9, h) lim ), sin 5 sin 5, l) lim 0 tg Zbadać, czy istnieją granice: sinπ) lim, b) lim e +, 0 c) lim 0 arcctg, d) lim e ln... Wyznaczyć asymptoty funkcji: f) = e) f) =, b) f) = +, c) f) =, d) f) = 4, 4, f) f) = ln sin, g) f) =, h) f) = +. + ln.. Czy można dobrać parametry a, b R tak, aby funkcja f była ciągła na R? Obliczyć odpowiednie granice i narysować wykres funkcji f. + dla < f) = b dla = + a + dla >, b) f) = { a + b dla < arctg dla,.4. Korzystając z twierdzenia Darbou uzasadnić, że równanie ma dokładnie jedno rozwiązanie na wskazanym przedziale. Przedstawić graficzną interpretację równania. 4 =, 0,5, ); b) ln =, 0,5, ); c) =,, 0,5); d) = 4,, ). Podobne zadania także rozwiązane) można znaleźć w skryptach: M.Gewert, Z.Skoczylas, Analiza matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 008, M.Gewert, Z.Skoczylas, Wstęp do analizy i algebry. Teoria, przykłady, zadania, Oficyna Wydawnicza GiS, Wrocław 009. Jolanta Sulkowska

13 LISTA 5 Rachunek różniczkowy funkcji jednej zmiennej na -4 ćwiczenia) 5.. Korzystając z definicji zbadać, czy istnieją pochodne jednostronne oraz pochodna podanej funkcji we wskazanym punkcie. Narysować wykres funkcji. y) = 4, 0 = ; b) f) = sin, 0 = 0; { c) g) = dla sgn, 0 = 0; d) h) = ) dla >, 0 =. 5.. Korzystając z wzoru na pochodną funkcji f) = α i reguł różniczkowania, obliczyć pochodną funkcji: y = , b) y = , c) y = ; d) y = 8 9 ) Korzystając z wzoru na pochodną iloczynu lub ilorazu, obliczyć pochodną funkcji: y = e cos, b) y = ln, c) y = sin, d) y = tg arctg, e) y = + +, f) y = 4, g) y =, h) y = sin + cos sin cos Obliczyć pochodną funkcji: y = ln), b) y = ), c) y = sin 5 π ), d) y = arctg 4, e) y = + +, f) y = sin, g) y = cos π ), h) y = cos π Napisać równanie stycznej do wykresu funkcji y = f) w punkcie 0, f 0 )). Sporządzić rysunek. f) = sin, 0 = 0; b) f) = ctg, 0 =,5π; c) f) = ln ), f 0 ) = Napisać równanie tej stycznej do wykresu funkcji y = f), która ma podaną własność. f) = ln, styczna jest równoległa do prostej 5 + 5y = 0; b) f) = +, styczna jest prostopadła do prostej y = 0; c) f) =, styczna jest pozioma; + d) f) =, styczna tworzy kąt π z dodatnim kierunkiem osi OX.

14 5.7. Korzystając z reguły de L Hospitala obliczyć granice: ln sin π lim )) ln ln + ) ), b) lim, c) lim 0 ctg, d) lim + ln ), e) lim 0 + ln, f) lim π π ) tg Wyznaczyć wszystkie asymptoty funkcji: f) = arctg, b) f) = ln + ), c) f) = arctg, d) f) = ln 4 ) Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji. Naszkicować ich wykresy. y) = 4 4, b) y) = +, c) f) = e, d) g) = ln Znaleźć najmniejszą i największą wartość funkcji na wskazanym przedziale: f) =, [0, 5], b) f) = arctg, [0, ], c) f) = sin + sin, [ 0, π ]. 5.. Wyznaczyć dwie liczby dodatnie, których suma jest równa 0, a iloczyn kwadratu pierwszej i trzeciej potęgi drugiej ma wartość największą. b) Zbadać, który z prostopadłościanów o podstawie kwadratowej i danym polu powierzchni całkowitej ma największą objętość. c) Firma spedycyjna przyjmuje zlecenie przewozu prostopadłościennych paczek, dla których suma wysokości i obwodu podstawy jest nie większa niż 08 cm. Znaleźć wymiary paczki o kwadratowej podstawie i największej objętości, która może być przesłana za pośrednictwem tej firmy. d) Przez punkt P =, ) poprowadzić prostą tak, aby wraz z dodatnimi półosiami układu współrzędnych tworzyła trójkąt o najmniejszym polu. 5.. Wyznaczyć zbiór wartości funkcji: f) = +, b) g) = + ) e, c) h) = ln, d) h) = sin sin. 5.. Wyznaczyć przedziały wklęsłości, wypukłości i punkty przegięcia funkcji f) = +, b) f) = earctg, c) f) = ln, d) f) = sin + 0,5 sin.

15 5.4. Zbadać przebieg zmienności funkcji i sporządzić ich wykresy: f) =, ln b) f) =, c) f) =, d) f) = 4e e Napisać wzory Taylora z drugą i trzecią resztą dla podanych funkcji i punktów. Narysować wykres funkcji oraz wielomianu Taylora pierwszego i drugiego rzędu. f) =, 0 = ; b) f) =, 0 = Oszacować dokładność przybliżeń na wskazanych przedziałach: ln + ) +, 0,; b) + +, 0,0; c) cos, 0,; d) e +, 0,5. Podobne zadania także rozwiązane) można znaleźć w skrypcie: M.Gewert, Z.Skoczylas, Analiza matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 008, rozdział 4, 5, 6. Jolanta Sulkowska

16 LISTA 6. na -4 ćwiczenia) Całka nieoznaczona i oznaczona 6.. Korzystając z definicji i wzorów na pochodne podstawowych funkcji odgadnąć funkcje pierwotne F funkcji f: f) =, b) f) = +, c) f) = sin + π ), d) f) = e Obliczyć całki: 4 + d, d) 4 d, e) g) ctg d, ) ) ) b) d, c) + + d, d, f) h) sin cos d, i) cos cos sin d, 4 sin + π ) ) 6 cos + d Obliczyć całki stosując odpowiednie podstawienie 4 + d, b) 4 d, c) ) 5 d, ln e) d, f) e d, g) sin cos d, d) h) sin cos d, d Obliczyć całki, korzystając z tego, że + d, b) f ) f) + d, c) d = ln f) + C. ln d, d) e e + d Obliczyć całki, stosując wzór na całkowanie przez części e d, b) cos d, c) sin + π ) d, d) ln + ) d, e) ln d, f) ln d, g) arcctg d, h) e sin d Zapisać sumę całkową dla podanej całki oznaczonej. Zastosować równomierny podział przedziału całkowania. Wykorzystać wartość funkcji podcałkowej w prawych końcach podprzedziałów. Korzystając z definicji obliczyć całki z przykładów, b). 0 d, b) d, c) π 0 sin d, d) 0 + d.

17 6.7. Obliczyć całkę oznaczoną. Podać jej interpretację geometryczną, wykonując odpowiedni rysunek. + ) d, b) π sin d, c) e d, d) π ctg d, e) e ln d. 0 0 π 4 e 6.8. Wyznaczyć średnią wartość funkcji f na przedziale [a, b]. Wykonać rysunek. f) = sin, [a, b] = [0, π]; b) f) =, [a, b] = [0, ] Obliczyć pole figury ograniczonej podanymi krzywymi. Wykonać rysunek. y = +, y = + ; b) y = 4 +, y = ; c) y =, y =, y = ; d) y = ln + ), = 0, y = Napisać wzór na długość łuku wykresu funkcji różniczkowalnej i obliczyć długości podanych krzywych. Narysować je. y = [, 0, 4 ] ; b) y = 4 9, [, ]; [ π c) y = ln sin,, π ] ; d) y = ln, [, e]. 6.. Napisać wzór na objętość bryły obrotowej powstającej przez obrót wokół osi OX obszaru ograniczonego wykresem ciągłej funkcji nieujemnej y = f), osią OX i prostymi = a, = b. Korzystając z tego wzoru obliczyć objętość: kuli o promienu R, b) stożka ściętego o promieniach podstaw r, R i wysokości H, c) bryły powstającej przez obrót wokół osi OX obszaru T = {, y) R : 0 π } 4, 0 y tg, d) bryły powstającej przez obrót wokół osi OX obszaru T = {, y) R : π π }, 0 y cos. 6.. Stosując całkę oznaczoną, obliczyć pracę, jaką trzeba wykonać, aby opróżnić napełniony do połowy wodą zbiornik w kształcie walca o poziomej osi. Otwór znajduje się na górze zbiornika. Średnica walca D = m, długość L = 6 m, gęstość wody γ = 000 kg/m.

18 6.. Obliczyć całki funkcji wymiernych d) 8 d, d, b) e) d, c) + d, d, f) d Obliczyć całki funkcji trygonometrycznych e) sin 5 d, 5 cos d, e) b) sin cos d, π π sin sin d, c) f) π π cos sin d, d) sin cos 4 d, g) π π sin d, sin d. Podobne zadania z rozwiązaniami lub odpowiedziami) można znaleźć w skrypcie: M.Gewert, Z.Skoczylas, Analiza matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 008, rozdział 7, 8, 9. Jolanta Sulkowska

19 POWTÓRKA.. Obliczyć pochodne funkcji: f) =.. arctg ln + ), b) f) = e sin sin, c) f) = cos ), d) f) = Napisać równania stycznych do wykresu funkcji f) = arctg ) w miejscach zerowych funkcji. Pod jakimi kątami wykres przecina oś OX? b) Napisać równanie tej stycznej do wykresu funkcji f) = ln 0,5, która jest równoległa do osi OX. c) Napisać równanie tej stycznej do wykresu funkcji f) = ln + e ), która jest równoległa do prostej l : y = 5. d) Napisać równanie tej stycznej do wykresu funkcji f) = tg), π 4, π ), która 4 jest prostopadła do prostej l : + 5y = 0. e) Dla jakich wartości parametrów a, b parabola o równaniu y = + a + b jest styczna w punkcie, ) do prostej y =? Wykonać rysunek... Zbadać istnienie asymptoty cos o równaniu = 0 funkcji f) = sin 4, b) o równaniu = π ln + cos ) funkcji f) =, π c) poziomej w + funkcji f) = ) 6, d) o równaniu = 0 funkcji f) = sin..4. Znaleźć najmniejszą i największą wartość funkcji na wskazanym przedziale. f) = + e, [ 7, 0]; b) y) = c) g) = cos + sin, [ 0, π, [, ]; ]; d) y) = + ), [, ]..5. Wyznaczyć przedziały monotoniczności i ekstrema lokalne funkcji f. Naszkicować jej wykres. f) = ln + ), b) f) = ln 4, c) f) = e, d) f) = e ln.

20 .6. Wyznaczyć zbiór wartości funkcji. Naszkicować jej wykres. y) = ) ), b) f) = + ln ), c) f) = 4, d) f) =..7. W obszar ograniczony parabolą y = 6 i osią OX wpisano prostokąt tak, że jeden z jego boków leży na osi OX. Jakie wymiary ma prostokąt o największym polu? b) Metodami rachunku różniczkowego uzasadnić, że prostopadłościan o danej sumie długości krawędzi, kwadratowej podstawie i największej objętości jest sześcianem. c) Ile materiału stracimy wycinając z blachy w kształcie półkola o promieniu R prostokąt o największym polu?.8. Obliczyć całki: cosπ + ) d, b) e ) d, c) ln d, d) g) sin tgln ) d, e) d, e + ln + ln d, f) d, + h) + cos ) sin d, i) sin d..9. Obliczyć całkę oznaczoną. Podać jej interpretację geometryczną. Wykonać rysunek. e d, b) π sin cos d, c) e ln d, d) π tg d. 0 e 0.0. Obliczyć pole figury ograniczonej podanymi krzywymi. Wykonać rysunek. y =, y = + 4; b) y =, y = 5 + ) ; c) y =, y = ; d) y = 4 +, y = ; e) + y = 4, y = ; f) y = sin, y =, = π; g) y = ln + ), y =, = e; h) y = ln + ), y =, y =. Podobne zadania także rozwiązane) można znaleźć w skryptach: M.Gewert, Z.Skoczylas, Analiza matematyczna. Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 008, M.Gewert, Z.Skoczylas, Analiza matematyczna. Kolokwia i egzaminy, Oficyna Wydawnicza GiS, Wrocław 005. Jolanta Sulkowska

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644)

LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644) LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA MAT 67, 644) Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Dwie dodatkowe listy: POWTÓRKA i POWTÓRKA to przygotowanie do kolokwiów.

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

WSTĘP DO ANALIZY I ALGEBRY, MAT1460 WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia) Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji

Bardziej szczegółowo

Ćwiczenia r.

Ćwiczenia r. Ćwiczenia 9..8 r.. Wyznaczyć wskazane wartości, gdy spełnione są podane równania: a)sin=?,tg=; b)ctg=?,sin= π ) 7 ; π c)sin5=?,sin + =tg ; d)cos=?,+tg9 tg + π ).. Rozwiązać nierówności: a)+4 +

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x

(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x . Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

ANALIZA MATEMATYCZNA I

ANALIZA MATEMATYCZNA I ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Lista nie zawiera

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)). MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA I

ANALIZA MATEMATYCZNA I ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co tydzień Choć zadania po symbolu potrójne karo nie są typowe, warto też poświęcić im nieco uwagi Lista nie zawiera odpowiedzi, ale poprawność

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30 Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 B Nazwa w języku angielskim Mathematical Analysis 1B Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

Lista zadań nr 2 z Matematyki II

Lista zadań nr 2 z Matematyki II Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

Pochodna i jej zastosowania

Pochodna i jej zastosowania Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)

Bardziej szczegółowo

Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e)

Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e) Tydzień - Logika. Każde z poniższych zdań wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.

Bardziej szczegółowo

3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość.

3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość. 1. Zapis matematyczny i elementy logiki matematycznej (1) Zapisz, używając symboliki matematycznej zdania: (a) Liczby x i y mają wspólny dzielnik większy od 2. (b) Jeśli x i y różnią się o 1, to nie mają

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza II

Model odpowiedzi i schemat oceniania do arkusza II Model odpowiedzi i schemat oceniania do arkusza II Zadanie 12 (3 pkt) Z warunków zadania : 2 AM = MB > > n Wprowadzenie oznaczeń, naprzykład: A = (x, y) i obliczenie współrzędnych wektorów n Obliczenie

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny. Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista Zapisać bez użycia symbolu wartości bezwzględnej a) 1 3, b) x + y, c) x + 1 x + 2 x 2 dla 1 x 2, x

Matematyka Lista 1 1. Matematyka. Lista Zapisać bez użycia symbolu wartości bezwzględnej a) 1 3, b) x + y, c) x + 1 x + 2 x 2 dla 1 x 2, x Matematyka Lista 1 1 Matematyka Lista 1 1. Zapisać bez użycia symbolu wartości bezwzględnej a) 1 b) + y c) + 1 + 2 2 dla 1 2 d) 8 e) + 1 f) 1 + + 2. 2. Korzystając z geometrycznej interpretacji wartości

Bardziej szczegółowo

Analiza Matematyczna. Lista zadań 10

Analiza Matematyczna. Lista zadań 10 Analiza Matematyczna Lista zadań 10 Zadanie 1 pole figury ograniczonej krzywymi y 2 = 2x, x + y = 1. Zadanie 2 objȩtość bryły V powstałej z obrotu wokół osi Ox powierzchni ograniczonej krzyw a o równaniu

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1 KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA Maciej Burnecki strona główna Spis treści I Zadania Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy 5 6 Całki

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 1

ANALIZA MATEMATYCZNA 1 ANALIZA MATEMATYCZNA 1 Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA 1 Kolokwia i egzaminy Wydanie siedemnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2018 Marian Gewert Wydział Matematyki

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Matematyka Lista 1 1. Matematyka. Lista 1

Matematyka Lista 1 1. Matematyka. Lista 1 Matematyka Lista 1 1 Matematyka Lista 1 1. Sprowadzić funkcje kwadratowe do postaci iloczynowej (jeżeli istnieje) i postaci kanonicznej oraz naszkicować ich wykresy: a) 2 + b) 2 2 + 1 c) 2 + 2 d) 2 + +

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo