Pochodne wyższych rzędów definicja i przykłady

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pochodne wyższych rzędów definicja i przykłady"

Transkrypt

1 Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta pochodna funkcji jest pochodną wszej pochodnej. Oznaczenia Pochodne wyższych rzędów oznaczamy Mamy więc Uwaga Dogodnie jest przy tym zdefiniować pochodną rzędu zerowego jako samą funkcję: Przykłady Dla mamy:,,, a wszystkie wyższe pochodne są równe zeru. Ogólnie: ta pochodna funkcji jest a wyższe pochodne są równe zeru. ta pochodna funkcji, gdzie oraz, jest równa zwróćmy uwagę, że tutaj pochodna dowolnego rzędu jest różna od zera!, co daje, że wszystkie wyższe pochodne funkcji są równe. Dla funkcji mamy to było dla pierwszych czterech pochodnych, a dowolną pochodną można obliczyć

2 wykorzystując 6. tożsamość zawartą wyżej:. Wzór (1) pozwala policzyć dowolną pochodną dowolnego wielomianu Nie będziemy tego wypisywać in extenso, (wzór ten jest dość skomplikowany i nie mamy tu potrzeby wypisywać go), a weźmy jego szczególny przypadek, tzn. wypiszmy pochodne od 0 do w punkcie. Mamy [1] : Stąd wynika wzór: -ta pochodna iloczynu funkcji wzór Leibniza Na tą pochodną sumy i różnicy sumy dwóch funkcji mamy proste wzory (natychmiastowy dowód indukcyjny: W pierwszym kroku: ; dalej: zasady indukcji wzór (3) jest prawdziwy dla każdego.) ; i na mocy Dla tej pochodnej iloczynu funkcji wzór jest bardziej skomplikowany, ale dający się ogarnąć: Twierdzenie (wzór Leibnitza) ta pochodna iloczynu dwóch funkcji dana jest wzorem (dla prostoty nie pisaliśmy jawnej zależności od ; wszędzie wyżej należy pamiętać, że, itd.)

3 Dowód będzie indukcyjny. Dla otrzymujemy znany już wzór na pochodną iloczynu. Załóżmy, że wzór (4) zachodzi dla i obliczmy pochodną obu jego stron. Z twierdzenia o pochodnej iloczynu mamy ostatnia równość wynika z faktu, iż mamy dla współczynników Newtona (wzór ten był pokazywany przy dowodzie wzoru dwumiennego Newtona). CBDO Przykład Obliczmy drugą pochodną funkcji odwrotnej. Najsampierw wyprowadźmy raz jeszcze wzór na tę pochodną, korzystając z wzoru na pochodną funkcji złożonej. Jeśli funkcja, a funkcja do niej odwrotna, to mamy:, skąd po zróżniczkowaniu otrzymamy co daje Obustronnie różniczkując, otrzymujemy co daje Różniczkując ten wzór, można uzyskać dowolną wyższą pochodną.

4 Wzór Taylora Twierdzenie (Wzór Taylora) Załóżmy, że funkcja jest krotnie różniczkowalna w przedziale. Oznaczmy. Wtedy zachodzi gdzie wyraz, zwany resztą tego rzędu, można przedstawić w jednej z postaci dla pewnego (reszta w postaci Lagrange'a), lub (reszta w postaci Cauchy'ego). Uwaga przed dowodem Wzór Taylora można uważać za uogólnienie wzoru Lagrange'a: Ten ostatni to szczególny przypadek wzoru Taylora dla. Dowód Wypiszmy z wzoru (6) resztę: Oznaczmy przez funkcję pomocniczą zdefiniowaną w ten sposób, że w zastępujemy przez : Pochodna funkcji jest równa:

5 W powyższej sumie kasują się więc wszystkie człony oprócz ostatniego i mamy Zarazem:,. Stosując do funkcji twierdzenie Lagrange'a o wartości średniej, otrzymujemy więc skąd otrzymujemy czyli resztę w postaci Cauchy'ego (8). Pozostaje pokazać, że równoważną postacią reszty jest postać Lagrange'a (7). W dowodzie używa się wzoru Cauchy'ego o wartości średniej z funkcjami: i. Wzór Cauchy'ego o wartości średniej mówi, że: dla pewnego Tu mamy:,,, skąd wynika, uwzględniając (9) czyli otrzymujemy tzn. postać reszty Lagrange'a (7). Uwagi 1. Wzoru Taylora zazwyczaj używa się w postaci:

6 Można na ten wzór patrzeć jako na przybliżenie funkcji w otoczeniu punktu przez wielomian ( tego stopnia). Jeśli umiemy oszacować resztę, to daje nam ona dokładność tego przybliżenia. Dla, powyższa wersja wzoru Taylora nazywana jest wzorem Maclaurina 2. Gdy funkcja jest różniczkowalna dowolną ilość razy, to reszta może być dowolnie wysokiego rzędu. Okazuje się, że można "odsunąć ją do nieskończoności" zapisać rozwinięcie Taylora jako nieskończony szereg. Aby to precyzyjnie wyrazić, potrzebne jest pojęcie zbieżności szeregu i jakieś kryteria zbieżności; zajmiemy się tym niedługo. Przykłady 1. Zapiszmy wzór Taylora dla funkcji w otoczeniu punktu z dokładnością do drugiego rzędu. Mamy:,, tak więc Stąd wynika, że dla każdego zachodzi równość 2. bo reszta jest dodatnia (jako że i ). Nierówność ta posiada wyrazisty sens geometryczny patrz wykres. Wzór Taylora pozwala w następujący sposób zwiększyć moc reguły de l'hospitala: Twierdzenie Jeśli funkcje i posiadają te pochodne ciągłe i jeśli to

7 Dowód We wzorze Taylora (6) zastąpmy przez. Z uwagi na znikanie pierwszych zostaje tylko sama reszta: pochodnych Tak więc Przechodząc do granicy i biorąc pod uwagę ciągłość funkcji i (podobnie jak to było przy dowodzie zwykłego tw. de l'hospitala), otrzymujemy wzór (11). CBDO Przykład Kryteria na ekstrema Niedawno pokazaliśmy, że jeśli funkcja (różniczkowalna) posiada w punkcie ekstremum, to. Pamiętamy też, że na odwrót nie jest: Jeśli, to nie znaczy, że w znajduje się ekstremum (np. dla ). Równość jest więc warunkiem koniecznym, ale niedostatecznym na istnienie tam ekstremum. Okazuje się, że badanie wyższych pochodnych daje ogólniejsze kryterium na istnienie ekstremum: Twierdzenie Załóżmy, że funkcja jest różniczkowalna krotnie i ta pochodna jest ciągła. Niech również Wówczas, jeśli jest parzyste, to w punkcie funkcja ma ekstremum właściwe: maksimum, jeśli, minimum, jeśli. Jeśli natomiast jest liczbą nieparzystą, to nie posiada ekstremum w punkcie.

8 Dowód Z wzoru Taylora mamy: i, ponieważ na mocy założenia pierwszych pochodnych zeruje się w punkcie, mamy Załóżmy, że jest liczbą parzystą. Niech. Ze względu na ciągłość funkcji w punkcie istnieje takie, że nierówność: implikuje. Jeśli więc, to i, zatem. Patrząc teraz na (13) widzimy, że jeśli (pamiętajmy, że jest parzyste, więc ). Powyższa nierówność oznacza, że w punkcie funkcja posiada maksimum. Z analogicznego rozumowania wynika, że jeśli jest liczbą parzystą i zachodzi:, to (znowu dla i ), co znaczy, że w punkcie funkcja ma minimum. Załóżmy teraz, że jest liczbą nieparzystą. Niech (w przypadku przeciwnym, tzn., rozumowanie jest analogiczne). Weźmy znów takie, aby dla było. Mamy wówczas dla nierówność a dla zachodzi nierówność tak więc w punkcie nie ma ani maksimum, ani minimum. Przykład Funkcja posiada w minimum, jeśli jest parzyste i nie posiada minimum, jeśli jest nieparzyste. Uwaga Najczęściej spotyka się w zastosowaniach ekstrema niezdegenerowane, tzn. takie, że druga pochodna jest różna od zera. Wtedy testowanie, czy dany punkt krytyczny odpowiada ekstremum, kończy się na drugiej pochodnej.

9 Interpretacja geometryczna drugiej pochodnej. Punkty przegięcia Uprzednio widzieliśmy, że jeśli, to funkcja rośnie w otoczeniu. Jeśli więc, to funkcja rośnie; a jeśli ponadto, to rośnie jeszcze szybciej. To była heurystyka, a teraz Twierdzenie Jeśli druga pochodna funkcji jest ciągła i: 1. zachodzi 2. krzywa jest dla pewnego otoczenia punktu położona powyżej, to krzywa jest dla pewnego otoczenia punktu położona powyżej stycznej do tej krzywej w punkcie ; zachodzi krzywa jest dla pewnego otoczenia punktu położona poniżej, to krzywa jest dla pewnego otoczenia punktu położona poniżej stycznej do tej krzywej w punkcie. Uwaga Patrząc na wykres funkcji, widzimy, że w pierwszym przypadku wykres jest skierowany wypukłością do dołu, a w drugim do góry.

10 Dowód 1. Oszacujmy różnicę między ilorazem różnicowym a pochodną: Na mocy wzoru Taylora mamy: Ponieważ, to dla dostatecznie małego mamy również Interpretując iloraz różnicowy jako tangens kąta nachylenia siecznej do osi wnioskujemy, że dla tangens ten jest większy niż, tzn. większy niż tg kąta między styczną a osią. A to oznacza, że rozważana krzywa leży nad styczną, tak jak na rys. (3). 2. jest analogiczny. Przykłady Parabola w każdym punkcie leży nad styczną nic dziwnego, bo druga pochodna wszędzie jest tu równa 2. Wykres funkcji wykładniczej również leży wszędzie nad styczną tak być musi, bo druga pochodna. Punkt przegięcia Rozważmy sytuację, gdy krzywa posiada w punkcie styczną i dla dostatecznie małych przyrostów dodatnich krzywa leży po jednej strone stycznej (np. nad styczną), a dla dostatecznie małych przyrostów ujemnych leży po drugiej stronie krzywej (np. pod krzywą). Innymi słowy: Rozpatrzmy wyrażenie: i dla dostatecznie małego mamy: : oraz :. W takiej sytuacji mówimy, że krzywa ma punkcie punkt przegięcia. Przykład Sinusoida ma punkt przegięcia dla. Mamy bowiem:. Dla mamy, dla jest.

11 Z tw. powyżej wynika, że jeśli, to krzywa leży (lokalnie) po jednej stronie stycznej. W takiej sytuacji, punkt nie jest punktem przegięcia. Możemy to sformułować jako Twierdzenie Jeśli punkt jest punktem przegięcia krzywej, to. Sytuacja odwrotna nie zachodzi (np. dla w ). Funkcje wypukłe, wklęsłe i ich własności Funkcje wypukła i wklęsła Funkcję nazywamy wypukłą na, jeśli dla dowolnych i mamy rys. zaś wklęsłą, jeśli Wniosek Funkcja jest wypukła wtedy i tylko wtedy, gdy funkcja jest wklęsła. Wystarczy więc w dalszym ciągu zająć się tylko funkcjami wypukłymi. Twierdzenie Funkcja jest wypukła na wtedy i tylko wtedy, gdy dla dowolnego skończonego zbioru punktów i dla dowolnego zestawu liczb, takich, że, i, zachodzi Dowód indukcyjny. Niech będzie wypukła na wtedy nierówność (16) zachodzi dla. Załóżmy, że teza jest prawdziwa dla (tzn. prawdziwa jest. Niech i, będą takie, jak w sformułowaniu twierdzenia. Jeśli, to nierówność jest trywialna. Weźmy więc. Mamy:

12 a to znaczy, że prawdziwa jest. Udowodniliśmy więc implikację, czyli teza jest prawdziwa dla każdego. W drugą stronę, dla mamy definicję funkcji wypukłej. CBDO Inne, równoważne kryteria wypukłości Istnieją też inne równoważne kryteria wypukłości; użyteczne okaże się zaraz następujące stwierdzenie: 1. jest wypukła dla dowolnych punktów z przedziału spełniona jest nierówność 2. jest wypukła dla dowolnych punktów z przedziału spełniona jest nierówność 3. jest wypukła dla dowolnych punktów z przedziału spełniona jest nierówność Dowód Jeśli, to, gdzie i. jest wypukła wtedy i tylko wtedy, gdy dla dowolnych punktów mamy nierówność Ponieważ, i są dodatnie, to nierówność (20) jest równoważna nierówności czyli otrzymaliśmy (17).

13 Nierówność (20) można też zapisać w postaci która jest równoważna nierówności czyli otrzymaliśmy (18). Wreszcie, gdy nierówność (20) zapiszemy w postaci czyli otrzymaliśmy (19). CBDO Wniosek 1 Jeśli jest wypukła na, to istnieją granice: lewo- i prawostronne pochodne: Ponadto. Dowód Zauważmy, że funkcja jest monotoniczna i ograniczona (powyższe Stw.), a stąd wynika istnienie granicy (podobnie jak dla ciągów). Wniosek 2 Funkcja wypukła na odcinku otwartym jest ciągła. Założenie otwartości odcinka jest istotne: Funkcja wypukła na odcinku domkniętym może być nieciągła na jego brzegu. (rys. (4))

14 Funkcja wypukła na odcinku domkniętym może być nieciągła na jego brzegu Dla funkcji różniczkowalnych, mamy proste kryterium wypukłości. Twierdzenie Funkcja różniczkowalna na jest wypukła jej pochodna jest funkcją niemalejącą. Funkcja dwukrotnie różniczkowalna na jest wypukła jej druga pochodna jest nieujemna. Dowód Widać, że drugi punkt wynika z pierwszego; wystarczy więc udowodnić pierwszy. Niech będą punktami w. Z tw. Lagrange'a istnieją oraz takie, że oraz. Nierówność jest więc równoważna nierówności Stąd powyższa nierówność jest spełniona dla wszystkich jest funkcją niemalejącą. Ze Stw. wyżej wynika teza. wtedy i tylko wtedy, gdy CBDO Znaczenie wypukłości Badanie funkcji: Kryteria na ekstremum, położenie stycznych do wykresu. Termodynamika: Z wypukłości energii swobodnej wynika dodatniość takich (fizycznie oczywistych, ale trudnych bezpośrednio do udowodnienia) wielkości, jak ciepło właściwe: są to drugie pochodne en. sw. (tu: po temperaturze). 1. Wzór ten daje się znacząco uogólnić na dowolne funkcje, dając tym samym sposób na przybliżenie dowolnej funkcji przez wielomian; zrobimy to już niedługo.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

Rachunek różniczkowy funkcji f : R R

Rachunek różniczkowy funkcji f : R R Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Ciągi rozbieżne do Def. Mówimy, że ciąg jest rozbieżny do, jeśli Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności). Można obrazowo powiedzieć,

Bardziej szczegółowo

Rachunek Różniczkowy

Rachunek Różniczkowy Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

II. FUNKCJE WIELU ZMIENNYCH

II. FUNKCJE WIELU ZMIENNYCH II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową

Bardziej szczegółowo

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34 Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

Pochodna i jej zastosowania

Pochodna i jej zastosowania Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z 1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31 Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa

DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość

4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość 4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Twierdzenia Rolle'a i Lagrange'a

Twierdzenia Rolle'a i Lagrange'a Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Spis treści. Przedmowa do wydania piątego

Spis treści. Przedmowa do wydania piątego Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

Wykłady z matematyki - Pochodna funkcji i jej zastosowania

Wykłady z matematyki - Pochodna funkcji i jej zastosowania Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

EGZAMIN PISEMNY Z ANALIZY I R. R n

EGZAMIN PISEMNY Z ANALIZY I R. R n EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π

Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie 1. Styczne do krzywej: (a) y = sin x x 0 = π/6 (b) y = x 3 2x 2 + x 1 x 0 = 1 Tą styczną to już gdzieś objaśniałem. Jest to prosta o równaniu

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo