Pochodna funkcji odwrotnej
|
|
- Wacław Kwiatkowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie od tego, czy jest rosnąca czy malejąca). Pokażemy, że w tym przedziale funkcja też jest różniczkowalna, a przy okazji wyprowadzimy wzór na pochodną funkcji odwrotnej. Mianowicie mamy Jeśli tzn., to przy założeniu że. Przy zadanym weźmy. Mamy więc, tzn., skąd. Możemy więc traktować jako funkcję. Ze względu na ciągłość funkcji, mamy, a ponadto dla mamy, ponieważ funkcja jest różnowartościowa. Mamy więc: Przy drugiej równości powyżej korzystaliśmy z faktu, iż dla funkcji ciągłych, mamy: Jeśli, to. powyższe ma ilustrację/interpretację geometryczną. Rozpatrzmy krzywą daną równaniem. Poprowadźmy w jakimś punkcie (tu ) styczną do tej krzywej i znaczmy przez kąt utworzony przez styczną z osią, a przez kąt utworzony przez styczną z osią. Oczywiście. Wówczas czyli zgodnie z wzorem (1). Za pomocą powyższego twierdzenia policzymy pochodne kolejnych funkcji elementarnych.
2 i, ogólniej,. Weźmy ; wtedy. Mamy:, a ostatnia równość to właśnie. W ogólniejszym przypadku, bierzemy, a dla funkcji odwrotnej. Pamiętamy, że Weźmy i wtedy. Mamy:, (znak pierwiastka to plus, bo 2. ), a ostatnia równość to. Rozważania są analogiczne:, ; jedyna różnica jest w znaku, bo i dalej jak w a), z wynikiem końcowym.. Dla jest, ; stąd
3 Ekstrema funkcji. Rolle'a Maksimum i minimum Niech funkcja będzie określona w otoczeniu punktu (tzn. w jakimś przedziale otwartym, zawierającym ). Jeśli istnieje takie, że. to mówimy, że funkcja mamy nierówność: ma maksimum w punkcie. Jeśli zaś przy analogicznych założeniach to mówimy, że funkcja ma minimum w punkcie. Innymi słowy, w punkcie występuje maksimum (minimum), jeśli istnieje takie otoczenie punktu, że jest największą (najmniejszą) liczbą w zbiorze wartości, jakie funkcja przyjmuje na. Jeśli we wzorach (2) i (3) zastąpić znaki ( ) przez ( ), to mamy do czynienia z maksimum (minimum) właściwym. Przykłady Funkcja posiada minimum w punkcie ; funkcja posiada maksima w punktach, oraz minima w punktach,. funkcja posiada minimum w. Esktrema Maksima i minima obejmujemy wspólną nazwą ekstremów funkcji. Z pojęciem ekstremum ściśle jest związane (ale różne) pojęcie kresów wartości funkcji na zbiorze. Ekstrema są pojęciami lokalnymi: Aby stwierdzić, czy funkcja posiada ekstremum w danym punkcie, wystarczy znać wartości funkcji w dowolnie małym otoczeniu punktu. Natomiast wyznaczenie kresów zbioru wartości funkcji na zbiorze wymaga znajomości funkcji na całym. Z definicji maksimum wynika natychmiast Jeśli funkcja określona w przedziale osiąga kres górny w punkcie należącym do wnętrza tego przedziału (tzn. ), to funkcja posiada maksimum w. (analogicznie dla kresu dolnego i minimum).
4 Kresy Jeśli okaże się, że kres górny funkcji jest osiągany w jednym z końców przedziału (np. w ), to nie mówimy, iż w tym punkcie funkcja posiada maksimum, ponieważ funkcja nie jest określona w otoczeniu. Np. funkcja na zbiorze posiada kres górny równy 1; nie nazywamy go jednak maksimum. Jeśli funkcja jest różniczkowalna w punkcie i posiada w tym punkcie ekstremum, to. Załóżmy, że posiada w punkcie maksimum (jeśli minimum, to rozumowanie jest analogiczne). Weźmy więc takie, aby dla dowolnego takiego, że, zachodziła nierówność. Dzieląc przez, otrzymujemy dla dla Ponieważ z założenia istnieje pochodna, to Z poprzednich nierówności wynika jednak, że. Musi więc być odwrotne nie zachodzi: Równość może być spełniona, mimo iż funkcja nie posiada ekstremum w. Jest tak np. dla funkcji w punkcie. Punkt krytyczny Jeśli funkcja jest różniczkowalna w i, to punkt nazywamy punktem krytycznym funkcji. Istnienie ekstremum funkcji różniczkowalnej w punkcie oznacza, że styczna do krzywej punkcie jest równoległa do osi (z możliwością, że się z tą osią pokrywa). w
5 (Rolle'a) Niech funkcja będzie ciągła w przedziale domkniętym i różniczkowalna wewnątrz tego przedziału. Jeśli, to istnieje takie, że oraz. Jeżeli funkcja jest ciągła na przedziale domkniętym [a,b] i f(a)=f(b) to istnieje taki punkt c, że dla Jeśli funkcja jest stała, to. Można wtedy wziąć dowolny i teza tw. Rolle'a będzie spełniona. Załóżmy więc, że funkcja nie jest stała; np. niech przyjmuje wartości większe od. Oznaczając przez kres górny zbioru wartości funkcji na przedziale, mamy:. Zatem, z tw. Weierstrassa, istnieje takie, że. Przy tym, ponieważ z założenia ; zatem. To znaczy, że funkcja osiąga kres górny w punkcjie położonym wewnątrz przedziału. Zgodnie z twierdzeniem niedawno udowodnionym funkcja posiada w punkcie maksimum, co z kolei implikuje (pamiętając o różniczkowalności wewnątrz przedziału), że. Rolle'a można sformułować w następujący sposób: Jeśli, to istnieje takie, że przy tych samych założeniach, tzn. funkcja ma być różniczkowalna wewnątrz przedziału (lub, jeśli ; nie zakładamy tu, że lecz jedynie że ) i ciągła w oraz.
6 Lagrange'a i Cauchy'ego (Lagrange'a) Załóżmy (podobnie jak w tw. Rolle'a), że funkcja jest ciągła w przedziale i różniczkowalna wewnątrz tego przedziału. Zachodzi wówczas wzór Lagrange'a gdzie oraz. Wzór ten nazywany jest też wzorem Lagrange'a na wartość średnią, lub twierdzeniem o przyrostach skończonych. Widać, że szczególnym przypadkiem (gdy ) jest tw. Rolle'a. Okazuje się, że dowód tw. Lagrange'a można sprowadzić do tw. Rolle'a. Weźmy mianowicie funkcję i ponadto jest ciągła na i różniczkowalna w ; jej pochodna jest Ponadto, zatem spełnia założenia tw. Rolle'a. Skoro tak, to pochodna znika w pewnym punkcie między i. Możemy to wypowiedzieć tak, że istnieje takie, że czyli zachodzi wzór z tezy tw. Lagrange'a.
7 W sposób podobny, jak wzór (4) przy tw. Rolle'a, można tezę tw. Lagrange'a sformułować w następujący sposób: Dla funkcji różniczkowalnej wewnątrz przedziału i ciągłej na (to dla ; dla jest to przedział ) istnieje takie, że Wnioski wypływające z twierdzenia Lagrange'a Z tw. Lagrange'a wypływają dwa wnioski, bardzo ważne dla rachunku całkowego: Jeśli zachodzi, to funkcja w tym przedziale jest stała. Na mocy udowodnionego dopiero co wzoru (6), mamy bowiem dla każdego i :, co oznacza, że const. Jeśli zachodzi, to const. Mamy:, czyli funkcja ma pochodną równą zeru. Na mocy dopiero co udowodnionego twierdzenia znaczy to, że jest stała, tzn. const. (Cauchy'ego; (czasem z przydomkiem: O wartości średniej)) Jeśli funkcje i są ciągłe na przedziale i różniczkowalne wewnątrz oraz jeśli jest, to istnieje takie, że
8 gdzie. Przed dowodem Lagrange'a otrzymuje się z tw. Cauchy'ego, jeśli podstawić. Okazuje się, że także tw. Cauchy'ego wynika z tw. Lagrange'a, ale tu trzeba zaargumentować następująco: Weżmy funkcję (mianownik mamy Funkcja jest różny od zera ze względu na założenie, że wszędzie w przedziale i tw. Rolle'a). spełnia założenia tw. Rolle'a: Jest różniczkowalna i ciągła jak trzeba, oraz. Pochodna funkcji jest zatem (z tw. Rolle'a) istnieje takie, że. Podstawiając we wzorze (8), otrzymujemy (7). Analogicznie do sposobu, w jaki tw. Rolle'a i Lagrange'a były wyrażane wzorami (4) i (6), można tw. Cauchy'ego sformułować tak: Istnieje takie, że W powyższym wzorze jest TO SAMO w liczniku i mianowniku. Różniczkowanie funkcji złożonych Niech,, przy tym funkcja jest określona na zbiorze wartości funkcji ; ponadto niech i będą różniczkowalne, a pochodna niech będzie ciągła. Następujący wzór wyraża pochodną funkcji złożonej przez pochodne i.
9 tzn. Przy danych i weźmy, tzn.. Zastosujmy teraz wzór Lagrange'a na wartość średnią w wersji (6) do funkcji ; otrzymamy dla pewnego (pamiętajmy, że jest pewną funkcją ). Co stanie się z powyższym wyrażeniem, gdy weźmiemy jego granicę przy? Otóż ze względu na ciągłość funkcji, mamy, a ponieważ, to również. Skoro tak, to, co w połączeniu z ciągłością funkcji daje Mamy więc: Przykłady na dwa sposoby: (różniczkowanie funkcji złożonej) Udowodnimy teraz anonsowany wcześniej wzór Dow. Napiszmy w postaci: i ze wzoru na pochodną funkcji złożonej Niejednokrotnie trzeba kilkakrotnie zastosować twierdzenie o pochodnej funkcji złożonej. Mamy np. pochodną funkcji trzykrotnie złożonej:
10 Sztuczka mnemoteczniczna Wzór powyższy można zapamiętać np. w następujący sposób: Oznaczmy:,,, oraz. Można wtedy napisać pamiętając,w jakich punktach są liczone wszystkie pochodne. W powyższym wzorze pochodne zachowują się jak ułamki. Ale UWAGA! Jest to zbieżność przypadkowa; inne pochodne (zwł. cząstkowe) już siętak nie zachowują! wzór na pochodną funkcji odwrotnej ze wzoru na pochodną funkcji złożonej: biorąc pochodną: i lub Związek między znakiem pochodnej a monotonicznością funkcji Z tw. Lagrange'a wynika następujący związek pomiędzy znakiem pochodnej a tym, czy funkcja rośnie, czy maleje. * Jeśli zachodzi nierówność, to funkcja jest w tym przedziale ściśle rosnąca. Jeśli mamy, to funkcja jest ściśle malejąca. Ze wzoru (6) mamy, dla : jeśli w przedziale pochodna jest stale dodatnia, bądź, jeśli pochodna jest stale ujemna. Czyli funkcja jest ściśle rosnąca w pierwszym przypadku, a ściśle malejąca w drugim. Jeśli założyć, że zachodzi nierówność nieostra ( ), to w tezie mamy, że funkcja jest rosnąca (malejąca). Zachodzi również twierdzenie odwrotne do powyższego:
11 Jeśli funkcja jest różniczkowalna w punkcie i rośnie (maleje) w jakimś przedziale zawierającym ten punkt, to (odpowiednio ). Jeśli rośnie, to dla mamy i przechodząc do granicy otrzymujemy. Jeśli funkcja maleje, to rozumowanie jest analogiczne. Z tw. *( wynika (wynikające z tw. *) Jeśli i pochodna jest ciągła w punkcie, to funkcja jest ściśle rosnąca w pewnym otoczeniu punktu. Analogicznie: Jeśli i pochodna jest ciągła w punkcie,to funkcja jest ściśle malejąca w pewnym otoczeniu punktu. Ponieważ funkcja jest ciągła w, to nierówność mówi, że w pewnym otoczeniu punktu funkcja jest dodatnia:. Znaczy to, że pochodna jest dodatnia. Na mocy funkcja jest rosnąca w tym przedziale. Powyższe twierdzenie można przeformułować w następujący sposób: 1. Jeśli, to (przy założeniu ciągłości pochodnej) funkcja jest różnowartościowa w pewnym otoczeniu punktu, tzn. dla ( ). Skoro tak, to funkcja posiada w tym przedziale funkcję odwrotną, czyli równanie: posiada w tym przedziale dokładnie jedno rozwiązanie..
12 2. Jak wiemy, pochodna tejże funkcji odwrotnej jest odwrotnością pochodnej funkcji. 3. Powyższe fakty: Przy założeniu istnieje w otoczeniu punktu funkcja odwrotna, lub że równanie: ma dokładnie jedno rozwiązanie w otoczeniu punktu przenoszą się na wyższe wymiary, tzn. zachodzą dla odwzorowań. Oczywiście konieczne jest stosowne uogólnienie pojęć. Będzie o tym mowa w semestrze II. Wyrażenia nieoznaczone i reguła de l'hospitala Często zdarza się konieczność obliczania granic postaci następującej: Wyrażenia tego rodzaju noszą nazwę wyrażeń nieoznaczonych typu. Jeśli funkcje i są ciągłe w przedziale domkniętym i są różniczkowalne wewnątrz tego przedziału i jeśli, to przy założeniu, że ta ostatnia granica istnieje. Kluczem do dowodu jest twierdzenie Cauchy'ego o wartości średniej. Oznaczmy:. Należy dowieść, że Ale: Równości: i wzór Cauchy'ego (7) dają: dla pewnego. Oznaczmy. Z założenia istnieje. Ponieważ zaś, to też i, co za tym idzie, też istnieje i jest równe ; mamy więc
13 skąd otrzymujemy wzór (de l'hospitala). Analogiczne twierdzenie mamy w przypadku granicy lewostronnej. Wzór de l'hospitala W przypadku, gdy pochodne i są ciągłe w punkcie, a ponadto, ze wzoru (10) (plus jego odpowiednika dla granicy lewostronnej) natychmiast wynika wzór de l'hospitala: Po prawej stronie powyższego wzoru nie ma granicy! Analogiczne wzory mamy w przypadku granic jednostronnych i pochodnych jednostronnych. Przykład Jeśli zdarzy się, że po prawej stronie wyrażenia (12) mamy, to tegoż wzoru nie daje się stosować. Ale można postępować rekurencyjnie! tzn. badać wyższe pochodne. Powyższe twierdzenia dotyczyły wyrażeń typu. Przez sztuczki z zamianą zmiennych i inne, można też liczyć inne wyrażenia nieoznaczone: ; ; ; ;.
1 Pochodne pierwszego rzędu
Pocodne pierwszego rzędu. Podstawowe definicje Def. Niec funkcja f będzie określona w pewnym przedziale otwartym zawierającym punkt a. Ilorazem różnicowym funkcji f w punkcie a dla przyrostu nazywamy funkcję
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Pochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:
Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Ciągłość funkcji i podstawowe własności funkcji ciągłych.
Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)
Twierdzenia Rolle'a i Lagrange'a
Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Pochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
ZASTOSOWANIA POCHODNEJ FUNKCJI
Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Funkcja wykładnicza kilka dopowiedzeń
Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Wykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)
Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI
Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie
Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Rachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
1 Funkcje i ich granice
Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Definicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale
Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 5. Badanie w Krakowie) przebiegu
Całki niewłaściwe. Całki w granicach nieskończonych
Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe
Pochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Analiza matematyczna. 1. Ciągi
Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim
Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ
EAIiIB-Inormatyka -Wykład 4- dr Adam Ćmiel cmiel@agedupl RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Niec : R D R Niec D będzie punktem skupienia zboru D Oznaczenia: Ot,δ) K,δ) -δ, +δ) D ; S,δ) Ot,δ)-{
f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI
TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
WŁASNOŚCI FUNKCJI MONOTONICZNYCH
Dorota Sasiuk WŁASNOŚCI FUNKCJI MONOTONICZNYCH WSTĘP... WIADOMOŚCI WSTĘPNE... 3. DEFINICJA FUNKCJI:... 3. DZIAŁANIA ARYTMETYCZNE NA FUNKCJACH:... 3.3 ZŁOŻENIE FUNKCJI:... 3.4 FUNKCJA ODWROTNA:... 4.5 FUNKCJA
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa
Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Ciągłość funkcji. Seminarium dyplomowe powtórzenie wiadomości. Jan Kowalski. 22 maja Uniwersytet Mikołaja Kopernika w Toruniu
Seminarium dyplomowe powtórzenie wiadomości Uniwersytet Mikołaja Kopernika w Toruniu 22 maja 2013 1 Podstawowe definicje i fakty 2 funkcji w punkcie Definicja Niech f będzie funkcją określoną na zbiorze
DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa
Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć