Wykłady z matematyki - Pochodna funkcji i jej zastosowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykłady z matematyki - Pochodna funkcji i jej zastosowania"

Transkrypt

1 Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz

2 Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje skończona granica lim 0 +h) f (x 0 ) h 0 h to nazywamy ją pochodną funkcji f w punkcie x 0 i oznaczamy f (x 0 ). Jeżeli pochodna istnieje w każdym puncie pewnego zbioru D, to przyporządkowanie każdemu x D liczby f (x) nazywamy funkcją pochodną. Mówimy, że f(x) jest różniczkowalna w D.

3 Interpretacja geometryczna pochodnej Pochodna f (x 0 ) jest równa tangensowi kąta jaki tworzy styczna do wykresu f (x) z osią układu Ox w punkcie x 0. Równanie tej stycznej to: y y 0 = f (x 0 )(x x 0 ). Funkcja różniczkowalna jest ciągła. Twierdzenie odwrotne jest nieprawdziwe (np. f (x) = x nie jest różniczkowalna chociaż jest ciągła w punkcie x 0 = 0).

4 Interpretacja fizyczna pochodnej Jeżeli t oznacza czas a s(t) jest długością drogi od początku ruchu do chwili t wtedy s (t 0 ) = lim jest s(t 0 + t) s(t 0 ) t 0 t prędkością chwilową tego ruchu w chwili t 0.

5 Definicja pochodnej Formalnie rzecz biorąc pochodna w punkcie jest granicą ilorazów różnicowych. Jednak do praktycznego liczenia pochodnych wystarczy znać wyłącznie pochodne funkcji elementarnych oraz kilka podstawowych wzorów.

6 Pochodne funkcji elementarnych (x n ) = nx n 1 dla n R, w szczególności: (c) = 0 (x) = 1 ( 1 x ) = 1 ( x) = 1 x 2 2 x (e x ) = e x, (a x ) = a x ln a, (ln x) = 1 x, (log a x) = 1 x ln a (sin x) = cos x, (cos x) = sin x, (tg x) = 1 cos 2 x, (ctg x) = 1 sin 2 x (arc sin x) 1 =, (arc cos 1 x 2 x) = 1, 1 x 2 (arc tan x) = 1 1+x 2, (arc ctg x) = 1 1+x 2 Tych wzorów warto nauczyć się na pamięć, bo sprawdzanie za każdym razem pochodnej danej funkcji w tablicach (nawet jeśli te tablice ma się akurat pod ręką) jest czasochłonne.

7 Liczenie pochodnych Pochodna sumy (różnicy) funkcji to suma (różnica) pochodnych: (f (x) ± g(x)) = f (x) ± g (x) Stałą zawsze można wyłączyć przed pochodną: (af (x)) = af (x) Pochodną iloczynu oblicza się według wzoru: (f (x)g(x)) = f (x)g(x) + f (x)g (x)

8 Liczenie pochodnych Pochodną ilorazu oblicza się według wzoru: ( f (x) g(x) ) = f (x)g(x) f (x)g (x) (g(x)) 2 Pochodną funkcji złożonej oblicza się według wzoru: [f (g(x))] = f (g(x)) g (x) Pochodna funkcji odwrotnej przy pewnych założeniach to: (f 1 ) (x 0 ) = 1 f (y 0 )

9 Przykładowe pochodne (x sin x ln x) = 4x cos x 1 x (x 2 e x ) = (x 2 ) e x + x 2 (e x ) = 2xe x + x 2 e x = e x (2x + x 2 ) ( x2 e ) = (x2 ) e x x 2 (e x ) x (e x ) = 2xex x 2 e x 2 e 2x = 2x x2 e x Nieznacznie trudniejsze jest obliczanie pochodnej funkcji złożonych: (sin(ln(x 2 + 4x))) =... Póki nie nabierze się wprawy można podstawić za wnętrze funkcji zmienną t, tak aby nowa funkcja od t była funkcją elementarną:... = (sin t) t=ln(x 2 +4x)=...

10 Przykładowe pochodne Następnie obliczamy pochodną funkcji elementarnej, pamiętając o domnożeniu przez pochodną funkcji wewnętrznej (czyli tej za którą wstawiliśmy zmienną t):... = cos t t t=ln(x 2 +4x)=... i wracamy do podstawienia:... = cos(ln(x 2 + 4x)) (ln(x 2 + 4x)) =... I tak dalej. Jeśli nabierze się już wprawy, to można darować sobie wprowadzanie nowej zmiennej i liczyć w pamięci - pochodna logarytmu to odwrotność tego co w środku razy pochodna tego co w środku :... = cos(ln(x x)) x 2 +4x (2x + 4)

11 Kolejne przykłady pochodnych (2 ln tg x2 ) = 2 ln tg x2 1 1 ln 2 tg x 2 cos 2 x 2x 2 (najbardziej zewnętrzną funkcją jest 2 t, stąd zaczynamy od liczenia jej pochodnej, a następnie domnażamy przez pochodną funkcji wewnętrznej) (e x2 arc sin x) = (e x2 ) arc sin x + e x2 (arc sin x) = e x2 2x arc sin x + e x x 2 x

12 Kolejne przykłady pochodnych Jeszcze jednym typem pochodnej jest pochodna z funkcji typu f (x) g(x) Oblicza się ją korzystając z przekształcenia: f (x) = e ln f (x) skąd f (x) g(x) = e g(x) ln f (x) i już mamy do czynienia ze zwykłą funkcją złożoną. Przykładowo: (x sin x ) = (e sin x ln x ) = e sin x ln x (sin x ln x) = x sin x (cos x ln x + sin x 1 x )

13 Reguła de l Hospitala Jednym z wielu zastosowań pochodnych jest reguła de l Hospitala, czyli metoda obliczania granic w przypadku niektórych wyrażeń nieoznaczonych. Reguła ta to jedno z najsilniejszych narzędzi do obliczania granic. Jeśli obliczamy granicę (w punkcie lub w nieskończoności): i obie funkcje f, g dążą jednocześnie do zera lub do nieskończoności, czyli mamy do czynienia z nieoznaczonością typu [ 0] 0 lub [ ], to granicę można obliczyć według wzoru: lim x a f (x) g(x) f (x) lim x a g(x) = lim f (x) x a g (x) (o ile granica po prawej stronie istnieje)

14 Reguła de l Hospitala Przykłady: e lim x e x =... Łatwo widać, że mamy do czynienia z x 0 x nieoznaczonością typu [ 0 ], 0 zatem możemy użyć reguły de l Hospitala: (e... = (H) = lim x e x ) e = lim x + e x = 2 x 0 (x) x 0 1 ln sin 2x lim == (H) lim = x 0 ln sin x x 0 = lim x 0 2 tg x = lim x 0 tg 2x = (H) = 2 cos 2 x 2 cos 2 2x = lim x 0 cos 2 2x cos 2 x = 1 2 cos 2x sin 2x cos x sin x

15 Reguła de l Hospitala Niektóre inny typy nieoznaczoności można doprowadzić do postaci w której można użyć reguły de l Hospitala: Nieoznaczoność typu [0 ] Jeśli w iloczynie dwóch funkcji jedna dąży do zera, a druga do nieskończoności, możemy odwrócić (w sensie liczbowym) którąkolwiek z nich i w ten sposób otrzymać nieskończoność z założeń reguły de l Hospitala: lim x 0 (ex 1) ctg x =... Oczywiście e x 1 dąży w zerze do zera, a ctg x do nieskończoności. Ale: ctg x = 1 tg x więc nasza granica jest równa: e lim x 1 e = (H) = lim x x 0 tg x x 0 1 cos 2 x = 1

16 Reguła de l Hospitala Nieoznaczoność typu [ ] W takim wypadku można sprowadzić wyrażenie z którego liczymy granicę do wspólnego mianownika: lim (1 x 0 x 1 sin x ) = lim sin x x x 0 x sin x = (H) = cos x 1 sin x = lim x 0 sin x+x cos x = (H) = lim x 0 2 cos x x sin x = 0 Nieoznaczoności typu [0 0 ], [ 0 ], [1 ] W takim wypadku używamy podobnego przekształcenia jak w wypadku liczenia pochodnej funkcji typu f (x) g(x) : lim x x = lim e x ln x = e lim x 0 x ln x x 0 x 0 (ostatnie przekształcenie wynika z ciągłości funkcji e x ) Policzymy osobno granicę z wykładnika: ln x lim x ln x = lim = (H) = lim = lim( x) = 0 x 0 x 0 1 x 0 x 0 x 1 x 1 x 2 więc nasza granica to: e 0 = 1

17 Reguła de l Hospitala Zadanie: Obliczyć lim x x x 2 ln(1 + 1 x ) Po prostu należy wyłączyć x 2 przed nawias. lim x x 2 ln(1 + 1 x x ) = lim x 2 ( 1 x x ln(1 + 1 x )) = 1 x = lim ln(1 + 1 x ) = 0 1 x 1 0 = lim x x x 2 x x+1 x x x = lim x 2 = lim x x 2 + x x 2 2x + 2 ( 1 x 2 ) 2 1 x 3 = x = lim x 2x + 2 = 1 2

18 Ćwiczenia Oblicz pochodne funkcji: a) f (x) = e x sin x g) f (x) = x b) f (x) = sin x e h) f (x) = e x x2 +1 sin cos x c) f (x) = 2 tg x earc sin x i) f (x) = sin 3 2x d) f (x) = sin e x2 +1 j) f (x) = ln x sin(x 2 + 1) e) f (x) = (x 2 + 1) 2012 k) f (x) = x arc sin x f) f (x) = arc sin ln arc tan x l) f (x) = (sin x) x

19 Ćwiczenia Oblicz granice: 1 cos x a) lim x 0 x 2 e b) lim x x 1 x 0 sin 2 x x arc tan x c) lim x 0 x 2 d) lim x 1 x 10 9x + 8 x 7 6x + 5 e) lim ( 1 ctg x) x 0 x (e f) lim x e x ) 2 x 0 x 2 cos x g) lim ( 1 x 0 x 1 2 sin 2 x ) x h) lim 2 1 tg 1 x 1 2 πx x 2 i) lim x 1 (1 x) tg 1 2 π j) lim x (x x 2 ln (1 + 1 x )) x k) lim +(1 + x)ln x 0 l) lim x ( 2 π arc tan x) x

20 Ekstremum funkcji i monotoniczność Funkcja f (x) ma w punkcie x 0 maksimum lokalne jeżeli istnieje sąsiedztwo S punktu x 0, że f (x) < f (x 0 ). Funkcja x S f (x) ma w punkcie x 0 minimum lokalne jeżeli istnieje sąsiedztwo S punktu x 0, że f (x) > f (x 0 ). Jeżeli funkcja f(x) x S jest różniczkowalna w przedziale otwartym i ma ekstremum w puncie x 0 z tego przedziału to f (x 0 ) = 0.

21 Ekstremum funkcji i monotoniczność Jeżeli f(x) jest różniczkowalna w pewnym sąsiedztwie punktu x 0 i jest ciągła w puncie x 0 wtedy: gdy pochodna f (x) przy przejściu przez punkt x 0 zmienia znak z + na -, to funkcja ma maksimum w tym punkcie. Tak samo jest gdy f (x) > 0. gdy pochodna f (x) przy przejściu przez punkt x 0 zmienia znak z - na +, to funkcja ma minimum w tym punkcie. Tak samo jest gdy f (x) < 0.

22 Ekstremum funkcji i monotoniczność Jeżeli f(x) jest różniczkowalna w pewnym sąsiedztwie punktu x 0 i jest ciągła w puncie x 0 wtedy: funkcja jest rosnąca w przedziale (a,b) gdy f (x) > 0. x (a,b) funkcja jest malejąca w przedziale (a,b) gdy f (x) < 0. x (a,b)

23 Ekstrema globalne Liczbę M nazywamy wartością największa (maksimum globalnym) funkcji f(x) w zbiorze D, jeśli f (x 1 ) = M f (x) M. x 1 D x D Liczbę M nazywamy wartością najmniejszą (minimum globalnym) funkcji f(x) w zbiorze D, jeśli f (x 1 ) = M f (x) M. x 1 D x D

24 Wklęsłość i wypukłość funkcji Jeżeli f(x) ma pochodną w puncie x 0 wtedy: funkcja jest wypukła w puncie x 0, gdy dla pewnego sąsiedztwa punktu x 0 wykres tej funkcji leży całkowicie nad styczną w tym puncie. funkcja jest wklęsła w puncie x 0, gdy dla pewnego sąsiedztwa punktu x 0 wykres tej funkcji leży całkowicie pod styczną w tym puncie. Mówimy, że punkt (x 0, f (x 0 )) jest puntem przegięcia funkcji gdy wypukłość zmienia się na wklęsłość w x 0 lub odwrotnie tzn. wklęsłość na wypukłość.

25 Wklęsłość i wypukłość funkcji Jeżeli f (x) jest ciągła w pewnym przedziale otwartym (a,b) wtedy: gdy pochodna f (x) > 0 w tym przedziale to f(x) jest w tym przedziale wypukła. gdy pochodna f (x) < 0 w tym przedziale to f(x) jest w tym przedziale wklęsła.

26 Przebieg zmienności funkcji Badając pierwszą i drugą pochodną funkcji można uzyskać informacje o samej funkcji. Pierwsza pochodna Jeśli w jakimś przedziale jest f (x) > 0, to w tym przedziale f (x) jest rosnąca. Jeśli w jakimś przedziale jest f (x) < 0, to w tym przedziale f (x) jest malejąca. Jeśli w jakimś punkcie jest f (x 0 ) = 0 oraz w tym punkcie f (x) zmienia znak, to w tym punkcie jest ekstremum lokalne.

27 Przebieg zmienności funkcji Druga pochodna Jeśli w jakimś przedziale jest f (x) > 0, to w tym przedziale f (x) jest wypukła. Jeśli w jakimś przedziale jest f (x) < 0, to w tym przedziale f (x) jest wklęsła. Jeśli w jakimś punkcie jest f (x 0 ) = 0 oraz w tym punkcie f (x) zmienia znak, to w tym punkcie jest punkt przegięcia.

28 Przykład Przykładowo jeśli chcemy znaleźć przedziały monotoniczności i ekstrema funkcji f (x) = x x 2 +1, to (po zauważeniu, że dziedzina to R) liczymy pierwszą pochodną: f (x) = x2 +1 x 2x (x 2 +1) = 1 x2 2 (x 2 +1) = (1 x)(1+x) 2 (x 2 +1) Widać stąd, że pochodna 2 zeruje się tylko w punktach x = 1 i w x = 1. Nietrudno też zbadać (metodą wężyka ), że f (x) > 0 w przedziale ( 1, 1) oraz f (x) < 0 w przedziałach (, 1) i (1, + ).

29 Przykład Wnioski na temat samej funkcji można sformułować słownie, ale najwygodniej jest przedstawić je w tabelce: x (, 1) 1 ( 1, 1) 1 (1, ) f (x) f (x) min max Z tabelki można odczytać gdzie funkcja rośnie, a gdzie maleje, a także, że ma minimum lokalne w x = 1 (równe f ( 1) = 1 2 ) oraz maksimum lokalne w x = 1 (równe f (1) = 1 2 ).

30 Przykład Gdybyśmy natomiast chcieli znaleźć przedziały wypukłości i wklęsłości oraz punkty przegięcia funkcji f (x) = x 4 6x 2 + 2x + 5, to trzeba znaleźć drugą pochodną: f (x) = 4x 3 12x + 2 f (x) = 12x 2 12 = 12(x 1)(x + 1) Jak poprzednio bardzo łatwo sprawdzić gdzie druga pochodna się zeruje, gdzie jest dodatnia i gdzie jest ujemna. I jak poprzednio wnioski najwygodniej zamieścić w tabelce: x (, 1) 1 ( 1, 1) 1 (1, ) f (x) f (x) p.p. p.p. Jak widać punkty przegięcia są w x = 1 (wówczas f (1) = 2) oraz w x = 1 (wówczas f ( 1) = 2). Uwaga!: Jeśli badamy pełen przebieg zmienności funkcji, to w pierwszym wierszu punktami wyróżnionymi muszą być miejsca zerowe obu pochodnych oraz punkty spoza dziedziny.

31 Przebieg zmienności funkcji Wykorzystując całą zebraną do tej pory wiedzy możemy wyciągnąć wszystkie informacje o zachowaniu funkcji, czyli zbadać tytułowy przebieg zmienności funkcji. Schemat postępowania wygląda mniej więcej tak: Zebranie wstępnych informacji o funkcji: Dziedzina (koniecznie) Miejsca zerowe (niekoniecznie, ale warto wiedzieć gdzie wykres przecina oś OX ) Parzystość, nieparzystość, okresowość (opcjonalnie) Asymptoty Granice na wszystkich końcach przedziałów określoności Wnioski na temat asymptot pionowych i poziomych Ewentualne szukanie asymptot ukośnych

32 Przebieg zmienności funkcji Badanie pierwszej pochodnej Doprowadzenie pochodnej do najprostszej postaci (najlepiej iloczynowej) Zbadanie miejsc zerowych pochodnej oraz jej znaku Badanie drugiej pochodnej Doprowadzenie drugiej pochodnej do najprostszej postaci (najlepiej iloczynowej) Zbadanie miejsc zerowych drugiej pochodnej oraz jej znaku Tabelka Informacje o obu pochodnych zamieszczamy w tabelce i na ich podstawie wnioskujemy na temat zachowania funkcji Wykres W rozwiązaniu powinny być uwzględnione wszystkie istotne rzeczy choć nie koniecznie w podanej kolejności.

33 Przykład Zbadajmy funkcję f (x) = ex x. Oczywiście jej dziedzina to D f = (, 0) (0, + ). Widać też, że w dziedzinie funkcja nie ma miejsc zerowych. Poszukajmy zatem asymptot, zaczynając od liczenia granic na końcach przedziałów określoności: e lim x x x = [ 0 ] = 0 lim x + x = [ 1 ] 0 = lim x 0 + ex x e x x e = (H) = lim x x + ] = + Możemy 1 = + e lim x = [ 1 x 0 +0 zatem wywnioskować, że obustronną asymptotą pionową jest x = 0, lewostronną asymptotą poziomą jest y = 0, natomiast nie ma asymptoty poziomej prawostronnej. Analogiczny rachunek (dwukrotnie użyta reguła de l Hospitala) pokazuje, że nie ma też prawostronnej asymptoty ukośnej.

34 Przykład Przejdźmy więc do analizy pochodnych. Mamy: f (x) = ex x e x x = ex (x 1) 2 x oraz 2 f (x) = ex x x 2 e x (x 1) 2x x = ex (x 2 2x+2) 4 x Łatwo widać, że pierwsza 3 pochodna zeruje się w jedynce, dla argumentów mniejszych od jedynki jest ujemna, a dla większych od jedynki dodatnia. Natomiast druga pochodna nie ma miejsc zerowych, ale jest dodatnia dla iksów dodatnich i ujemna dla ujemnych. Zamieśćmy te informacje w tabelce:

35 Przykład x (, 0) 0 (0, 1) 1 (1, ) f (x) 0 + f (x) + + f (x) min Minimum lokalne w jedynce jest równe f (1) = e Wypełnianie tabelki należy zacząć od pierwszego miejsca - wyróżniamy w nim wszystkie miejsca zerowe obu pochodnych, punkty które wypadły z dziedziny oraz wszystkie przedziały między tymi punktami. Następnie uwzględniamy dziedzinę, to znaczy wykreślamy te miejsca, w których funkcja i jej pochodne nie istnieją. Później wypełniamy kolejne wiersze, zapisując w nich informacje uzyskane przy badaniu obu pochodnych (tzn. znak i miejsca zerowe), a na koniec uzupełniamy ostatni wiersz na podstawie dwóch wcześniejszych.

36 Przykład Na końcu na podstawie asymptot i tabelki możemy zrobić wykres funkcji:

37 Ćwiczenia Znajdź przedziały monotoniczności i ekstrema lokalne funkcji: a) f (x) = x 3 + 3x 2 9x + 2 b) f (x) = x3 x+2 c) f (x) = x 1 x+2 d) f (x) = (x 2 3)e x Znajdź przedziały wklęsłości i wypukłości oraz punkty przegięcia funkcji: a) f (x) = x 4 6x 2 + x + 3 b) f (x) = ln(x 2 + 4) c) f (x) = (1 + x 2 )e x d) f (x) = x ln x Zbadaj przebieg zmienności funkcji: a) f (x) = xe x b) f (x) = x2 x 2 1

Pochodna i jej zastosowania

Pochodna i jej zastosowania Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34

Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34 Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,

Bardziej szczegółowo

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.

WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne

Bardziej szczegółowo

Wykłady z matematyki - Granica funkcji

Wykłady z matematyki - Granica funkcji Rok akademicki 2016/17 UTP Bydgoszcz Granica funkcji Otoczenie punktu 0 to przedział ( 0 ɛ, 0 + ɛ) dla każdego ɛ > 0 Sąsiedztwo punktu 0 to jego otoczenie bez punktu 0. Jeżeli funkcja jest określona w

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej

Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia

Analiza Matematyczna Ćwiczenia Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności

Bardziej szczegółowo

Rachunek różniczkowy funkcji f : R R

Rachunek różniczkowy funkcji f : R R Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji 4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo

Bardziej szczegółowo

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna

Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP

Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Wykład 6, pochodne funkcji. Siedlce

Wykład 6, pochodne funkcji. Siedlce Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności

Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na

Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na ograniczenie czasowe chciałam już dziś dać pewne wskazówki i porady,

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość

4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość 4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π

Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie 1. Styczne do krzywej: (a) y = sin x x 0 = π/6 (b) y = x 3 2x 2 + x 1 x 0 = 1 Tą styczną to już gdzieś objaśniałem. Jest to prosta o równaniu

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość

5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość 5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 5. Badanie w Krakowie) przebiegu

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Egzamin podstawowy (wersja przykładowa), 2014

Egzamin podstawowy (wersja przykładowa), 2014 Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji

Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji . Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ FUNKCJI

ZASTOSOWANIA POCHODNEJ FUNKCJI Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,

Bardziej szczegółowo

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Rachunek Różniczkowy

Rachunek Różniczkowy Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1

WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1 WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3

Bardziej szczegółowo

EGZAMIN PISEMNY Z ANALIZY I R. R n

EGZAMIN PISEMNY Z ANALIZY I R. R n EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z

Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z 1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

II. Wstęp: Funkcje elementarne - część 2

II. Wstęp: Funkcje elementarne - część 2 II. Wstęp: Funkcje elementarne - część 2 Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet EkonomicznyII. wwstęp: Krakowie) Funkcje elementarne - część 2 1 / 34 1

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki Spis treści I Elementy logiki, zbiory, funkcje 3 Zadania................................ 3....................... 4 II Funkcje trygonometryczne

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo