Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
|
|
- Marta Wróbel
- 8 lat temu
- Przeglądów:
Transkrypt
1 Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami: ( + ) (). (1) () lub d. (2) Dla przykładu obliczmy pochodną unkcji () 2. Na podstawie deinicji (1) mamy: d lim ( + ) Łatwo sprawdzić, że znaleziony przez nas wynik na pochodną unkcji () 2 (wzór (38)) jest szczególnym przypadkiem ogólnego wzoru (6), w którym należy podstawić n 2. Dla przykładu obliczmy jeszcze pochodną unkcji () 4. Korzystając z wzoru (6), mamy: ( 4 ) 4 3. Użyteczne są również wzory pozwalające obliczać pochodne wyrażeń złożonych będących iloczynem stałej a i unkcji, sumą lub różnicą dwóch unkcji i g oraz iloczynem lub ilorazem unkcji i g: (a ) a () ( ± g) ± g ( g) g + g (10) (11) (12) ( ( ) 2) 2 lim 0 ( ) g g g g 2 (13) 2 + ( ) 2 lim 0 [(g)] (g) g (14) lim (2 + ) 2. (3) 0 Otrzymany wynik na pochodną unkcji () 2 zapisujemy w postaci: ( 2 ) 2 (4) W podobny sposób można na podstawie deinicji (1) znaleźć wzory na pochodne podstawowych unkcji matematycznych. Poniżej przedstawiamy gotowe rezultaty obliczeń dla wybranych unkcji (a oraz n oznaczają stałe): (a) 0 ( n ) n n 1 (5) (6) Wzór (10) wykorzystujemy na przykład dla obliczenia pochodnej unkcji () 4 3 : (4 3 ) 4( 3 ) (15) Wzór (11) jest użyteczny na przykład w następującym przypadku: ( ) (2 3 ) + (6 5 ) (16) Wzór (11) zastosowaliśmy identyikując odpowiednie unkcje jako: 2 3 oraz g 6 5. Ostatnia równość w powyższym równaniu wynika z wzorów (6) i (10). Poniżej mamy przykład zastosowania wzoru (12): ( 3 sin ) ( 3 ) sin + 3 (sin ) 3 2 sin + 3 cos, (17) (sin ) cos (cos ) sin (ln ) 1 (7) (8) (9) gdzie odpowiednie unkcje to: 3 oraz g sin. Gdy mamy unkcję złożoną (g), stosujemy wzór (14): [sin(3)] sin (3) (3) cos(3) 3, gdzie sin(...), g 3.
2 2 Wzór (13) należy zastosować w przypadku: ( 2 4 ) (24 7) ( ) (2 4 7) ( ) ( ) 2 RÓŻNICZKA FUNKCJI Różniczka unkcji przy zmianie jej argumentu o określona jest jako iloczyn pochodnej /d i zmiany, czyli:. (18) d (2 43 7) ( ) (2 4 7) ( ) ( ) 2..., gdzie przyjęliśmy oraz g GEOMETRYCZNA INTERPRETACJA POCHODNEJ Zauważmy, że różniczka unkcji jest równa zmianie wartości stycznej w punckie następującej na odcinku od do + (patrz Rys. (2)). Wynika to stąd, że zmiana wartości stycznej o równaniu y a + b wynosi y a, a współczynnik kierunkowy stycznej, jak pokazano powyżej, ma wartość pochodnej: a /d liczonej w miejscu. Na podstawie Rys. (2) można się przekonać, że dla ma- W deinicji pochodnej (1) występuje stosunek zmiany wartości unkcji (+ ) () do zmiany wartości argumentu. Na Rys. (1) pokazano wykres unkcji (+ ) R y a+b (+ ) () P y a+b () P + Rysunek 2. Graiczne przedstawienie różniczki unkcji. + Rysunek 1. Sieczna przechodząca przez punkty P i R w granicy 0 staje się styczną do wykresu w punkcie. (), na którym zaznaczono sieczną przecinającą unkcję w punktach P [, () ] i R [ +, ( + ) ]. Sieczna jako prosta opisana jest równaniem postaci y a + b, gdzie a to tzw. współczynnik kierunkowy prostej, którego wartość dana jest przez stosunek a y/. Na podstawie Rys. (1) widzimy, że iloraz / to właśnie współczynnik kierunkowy siecznej przecinającej wykres unkcji w punktach P i R. W granicy 0 punkty P i R zlewają się i sieczna staje się styczną do wykresu w punkcie P. Oznacza to, że w granicy 0 stosunek / (czyli pochodna unkcji) staje się współczynnikiem kierunkowym stycznej. A zatem: Pochodna unkcji /d w punkcie ma wartość współczynnika kierunkowego stycznej do wykresu unkcji poprowadzonej w punkcie P [, () ]. łych wartości różniczka unkcji jest bardzo dobrym przybliżeniem zmiany wartości unkcji :. (19) A zatem, stosując powyższe przybliżenie, zmianę wartości unkcji przy zmianie argumentu o możemy obliczać z wzoru:. (20) d OBLICZANIE NIEPEWNOŚCI POMIAROWEJ Przybliżenie (20) wykorzystujemy przy obliczaniu niepewności pomiarowych wielkości mierzonych pośrednio. Niech będzie pewną wielkością izyczną daną poprzez wyrażenie unkcyjne (), gdzie jest wielkością mierzoną bezpośrednio. Wartość wielkości (mierzonej pośrednio) jest uzyskiwana na drodze obliczenia wartości wyrażenia () dla zmierzonej wartości. Z powodu nieunik-
3 3 nionego błędu pomiarowego, uzyskana wartość wielkości będzie się różnić od wartości prawdziwej o pewną wartość. Ponieważ błędy pomiarowe mają zwykle małe wartości, można przybliżyć, stosując wyrażenie (20). Błąd pomiarowy jest wielkością nieznaną, więc również. Można jednak podnieść do kwadratu równanie (20) i stosując podejście statystyczne otrzymać wyrażenie na tzw. wartość oczekiwaną obu stron równania. Otrzymamy wówczas: u 2 () ( ) 2 u 2 (), (21) d V V u(v) u(v) V4/3 r 3 dv dr u(r) gdzie u 2 () to wartość oczekiwana ( ) 2, a u 2 () to wartość oczekiwana ( ) 2. Stosując pewną argumentację naukową można oszacować wartość u 2 () i na podstawie (21) znaleźć wartość oczekiwaną u 2 (). Wielkości u() oraz u() to tzw. niepewności standardowe wyznaczenia wielkości, odpowiednio, i. Z wzoru (21) otrzymujemy: u() ( ) 2 u d 2 (). (22) PRZYKŁAD: Chcąc wyznaczyć objętość kuli, mierzymy jej promień r i wstawiamy do wzoru: V 4 3 πr3. (23) Pomiar objętości kuli jest zatem pomiarem pośrednim, a wielkością mierzoną bezpośrednio jest promień r. Załóżmy, że znamy niepewność standardową pomiaru bezpośredniego, czyli znamy u(r). Oznacza to, iż prawdziwa wartość promienia r mieści się z dużym prawdopodobieństwem w przedziale ( r u(r), r + u(r) ). Jak pokazuje Rys. 3, przedziałowi możliwych wartości r odpowiada pewien przedział (V u(v ), V + u(v )), w którym może się znajdować prawdziwa wartość objętości. Aby znaleźć u() korzystamy z wzoru (22), czyli mamy: (dv ) 2 u(v ) u dr 2 (r). (24) Tak określona wartość u(v ) wyznacza nam tzw. niepewność standardową pomiaru objętości. Wykonajmy obliczenia dla przykładowych wartości liczbowych. Niech w wyniku pomiaru uzyskana wartość promienia i błąd pomiaru wynoszą: r 2, 64 cm, u(r) 0, 0058 cm. (25) Ze wzoru (23) otrzymujemy wtedy: V 24, cm 3. (26) Aby oszacować niepewność u(v ) najpierw znajdujemy wzór na pochodną dv/dr. W tym celu korzystamy z tabeli wyżej podanych wzorów (wzór (6)) i otrzymujemy: u(r) u(r) Rysunek 3. Przedziałowi możliwych wartości promienia kuli ( r u(r), r + u(r) ) odpowiada pewien przedział możliwych wartości objętości (V u(v ), V + u(v )). Wstawiając ten wynik do wzoru (24), mamy:: r u(v ) (4πr 2 ) 2 u 2 (r), (28) co po podstawieniu wartości liczbowych daje u(v ) 0, 51 cm 3. Ostatecznie zatem, po zaokrągleniu wyniku (26), mamy: V 24, 53 cm 3, u(v ) 0, 51 cm 3. (29) POCHODNA CZĄSTKOWA Dla unkcji wielu zmiennych (, y, z), jako uogólnienie pojęcia pochodnej, określona jest tzw. pochodna cząstkowa. Pochodna cząstkowa po zmiennej (ozn. /) zdeiniowana jest jako granica: lim 0 ( +, y, z) (, y, z). (30) Analogicznie określona jest pochodna cząstkowa po zmiennej y i po zmiennej z: y lim y 0 z lim z 0 (, y + y, z) (, y, z), (31) y (, y, z + z) (, y, z). (32) z Z deinicji pochodnej cząstkowej wynika, że obliczanie pochodnej cząstkowej po jakiejś zmiennej nie różni się od obliczania zwykłej pochodnej, przy czym pozostałe zmienne należy w trakcie obliczania pochodnej traktować jako wielkości stałe. r ( ) dv 4 dr 3 πr3 4 3 π 3 r2 4πr 2. (27)
4 4 Na przykład, jeśli wykonujemy pochodną po zmiennej, wówczas y i z uznajemy za stałe, czyli unkcja (, y, z) na czas liczenia pochodnej staje się jakby unkcją tylko jednej zmiennej. Wszystkie podane wcześniej wzory (5)-(13) na pochodne unkcji jednej zmiennej mają zatem zastosowanie również przy obliczaniu pochodnych cząstkowych. Podajmy kilka przykładów obliczania pochodnej cząstkowej. Przykład 1: 2 + y 3 + z 4 (2 ) + (y3 ) + (z4 ) , y y (2 ) + y (y3 ) + y (z4 ) 0 + 3y y 2, z z (2 ) + z (y3 ) + z (z4 ) z 3 4z 3. Wykorzystaliśmy tu własność (11), że pochodna sumy jest sumą pochodnych, oraz akt, że pochodna ze stałej wynosi zero. Przykład 2: 2 + y 3 y 4 + z 5 ( ) 2 y 4 + z 5 + ( ) y 3 y 4 + z 5 1 y 4 + z 5 (2 ) y 4 + z 5, y y (2 + y 3 ) (y 4 + z 5 ) ( 2 + y 3 ) y (y4 + z 5 ) (y 4 + z 5 ) 2 (3y2 ) (y 4 + z 5 ) ( 2 + y 3 ) (4y 3 ) (y 4 + z 5 ) 2, z z (2 + y 3 ) (y 4 + z 5 ) ( 2 + y 3 ) z (y4 + z 5 ) (y 4 + z 5 ) 2 0 (y4 + z 5 ) ( 2 + y 3 ) (5z 4 ) (y 4 + z 5 ) 2 (2 + y 3 ) (5z 4 ) (y 4 + z 5 ) 2. Przy liczeniu pochodnej cząstkowej po y i z zastosowaliśmy wzór na pochodną ilorazu (13). Przykład 3: y + y (y) ( + y) (y) ( + y) ( + y) 2 (y) ( + y) (y) (1 + 0) y 2 ( + y) 2 ( + y) 2, y y (y) ( + y) (y) y ( + y) ( + y) 2 () ( + y) (y) (0 + 1) 2 ( + y) 2 ( + y) 2. Przy liczeniu pochodnej (y) skorzystaliśmy z wzoru (6). Dzięki temu, pamiętając że y jest traktowane teraz jak stała, mamy: (y) y () y 1 y. Analogicznie postąpiliśmy licząc pochodną cząstkową y (y), co dało nam w wyniku: y (y) y (y) 1. RÓŻNICZKA ZUPEŁNA FUNKCJI Różniczką zupełną unkcji (, y, z) nazywamy wyrażenie: + y y + z. (33) z Jak widać jest to uogólnienie pojęcia różniczki unkcji dla unkcji wielu zmiennych. Jeżeli zmiana argumentów unkcji, y, z jest niewielka, wówczas różniczka zupełna unkcji jest bardzo dobrym przybliżeniem zmiany wartości unkcji wywołanej zmianą wartości jej argumentów, czyli: + y y + z. (34) z
5 5 OBLICZANIE NIEPEWNOŚCI POMIAROWEJ - UOGÓLNIENIE Przybliżenie (34) wykorzystywane jest w analizie niepewności pomiarowych. Jeśli jakaś wielkość izyczna wyraża się w ormie zależności unkcyjnej (, y, z) od mierzonych bezpośrednio i niezależnie wielkości, y, z, które wyznaczone są z niepewnościami standardowymi równymi, odpowiednio, u(), u(y), u(z), wówczas, podnosząc do kwadratu wyrażenie (34) i obliczając wartości oczekiwane obu stron (uwzględniając, że wartości oczekiwane iloczynów y, z, y z dają zero), otrzymujemy wzór na niepewność standardową pomiaru wielkości : u() ( ) 2 u 2 () + ( ) 2 u 2 (y) + y ( ) 2 u 2 (z). z Wzór powyższy jest uogólnieniem wyrażenia (22) na przypadek unkcji wielu zmiennych. Uwaga: Jeśli zależność unkcyjna jest postaci: (, y, z) k a y b z c, (35) gdzie a, b, c, k to stałe, wówczas po wyliczeniu pochodnych, wstawieniu do powyższego wzoru na u() i podzieleniu obustronnym otrzymanego wyrażenia przez otrzymamy: u() a 2 ( u() ) 2 + b 2 ( u(y) y ) 2 ( ) 2 u(z) + c 2. z Jest to wygodny wzór do wyliczana niepewności względnej u()/ dla wielkości danych wzorem (35). PRZYKŁAD: Używając wahadła matematycznego, można wyznaczyć przyspieszenie ziemskie g, mierząc bezpośrednio jego długość l oraz okres T i wstawiając do wzoru: g 4π2 l T 2 (36) Załóżmy, że znamy niepewności pomiaru długości, u(l), oraz okresu, u(t ). Niepewność wyznaczenia przyspieszenia ziemskiego u(g) znajdujemy, korzystając z ogólnego wzoru na u(), czyli: u(g) (g l ) 2 ( ) 2 g u 2 (l) + u T 2 (T ). (37) Obliczając pochodne cząstkowe, dostajemy: (4π ) 2 2 ( ) 2 8π2 u(g) u 2 l (l) + u 2 (T ). (38) T 2 Uwaga: Ponieważ wzór (36) jest wyrażeniem postaci (35), tzn. T 3 g 4π 2 l 1 T 2, (39) zatem można również skorzystać z ogólnego wzoru na u()/ (ostatni wzór w ramce powyżej). Mamy wówczas: u(g) g (1) 2 ( u(l) l ) 2 ( ) 2 u(t ) + ( 2) 2, (40) T co, jak łatwo sprawdzić, jest równoważne wyrażeniu (38).
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.
Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy
MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Granice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby
Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego
2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Zadanie 14 15 16 17 18
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Funkcje dwóch zmiennych
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na
Szkice rozwiązań zadań z arkuszy maturalnych zamieszczonych w 47. numerze Świata Matematyki, który można nabyć w sklepie na www.swiatmatematyki.pl 1. Wypiszmy początkowe potęgi liczby Zestaw podstawowy
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania
Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Rachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ
TABELA INFORMACYJNA Imię i nazwisko autora opracowania wyników: Klasa: Ocena: Numery w dzienniku Imiona i nazwiska pozostałych członków grupy: Data: PRZYGOTOWANIE I UMIEJĘTNOŚCI WEJŚCIOWE: Należy posiadać
SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji
SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik
Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM
KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom rozszerzony Listopad 8 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. B Wskazówki do rozwiązania q =, więc q
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
ROZWIĄZANIA DO ZADAŃ
TURNIRJ MATEMATYCZNY ELIPSA dla klas LO ROZWIĄZANIA DO ZADAŃ Zadanie. (2 pkt.) Dla jakich wartości parametru m (m R), część wspólna przedziałów A = (, m m i B = 2m 2, + ) jest zbiorem pustym? / Jeśli A
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa
Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
Rachunek różniczkowy funkcji wielu zmiennych
Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych
Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych
Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta