Granica funkcji wykład 4
|
|
- Czesław Jarosław Łuczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g = 9,81 m s 2 Chcemy znaleźć prędkość kulki w danym momencie, np dla t = 2 Prędkość kulki w chwili t możemy zdefniować jako liczbę do której zbiega iloraz gdy zbiega do 0 Ponieważ s(t + ) s(t) s(t + ) s(t) = 0,5(gt2 + 2g + g() 2 gt 2 ) = gt + g 2 więc intuicja podpowiada nam, że prędkość kulki w chwili t jest równa gt Formalizacja problemu Problemy: W jaki sposób można sformalizaować powyższe rachunki (przy użyciu pojęcia granicy); W jaki sposób wykonywać podobne rachunki,gdy funkcja s jest bardziej skomplikowana? Rozwiązanie tych problemów dzięki pojęciom granicy funkcji i pochodnej Granica funkcji Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego r > 0 Liczba g jest granica właściwa funkcji f w punkcie x 0, co zapisujemy f(x) = g, wtedy i tylko wtedy, gdy dla dowolnego ciagu punktów (x n ) z sasiedztwa S(x 0, r) zbieżnego do x 0 mamy: f(x n) = g n 1
2 Granica prawostronna, lewostronna Uwaga Jeśli w powyższej definicji zamienimy S(x 0, r) na sąsiedztwo prawostronne x 0 S + (x 0 ) = (x 0, x 0 + r) dla pewnego r > 0, to otrzymamy definicję granicy prawostronnej w funkcji f w punkcie x 0 ; granica lewostronna funkcji f może być określona w analogiczny sposób Obrazowo: funkcja f ma w punkcie x 0 granicę właściwą g, gdy jej wartości odpowiadają argumentom dążącym do punktu x 0 (i różnym od tego punktu) dążą do liczby g Podana przez nas definicja granicy funkcji w punkcie została sformułowana przez E Heinego ( ) Przykład Uzasadnic, że (2x 7) = 1 x 4 Rozwiazanie Niech (x n ) będzie dowolnym ciągiem spełniającym warunki: {x n } S(4) oraz x n = 4 n Wtedy (2x n 7) = 2 ( x n) 7 = = 1 n n n Granica właściwa w nieformalnie Obrazowo: funkcja f ma w granicę właściwą g, jeżeli jej wartości odpowiadające argumentom dążącym do dążą do granicy g Zamiast równości f(x) = g stosowany jest też zapis f(x) g, gdy x albo f( ) = g Uwaga Definicja Heinego granicy właściwej funkcji w jest podobna do poprzedniej Przykład Można pokazać, że 5 x + 3 = 0 Twierdzenia o granicach właściwych funkcji Twierdzenie 1 (o arytmetyce granic funkcji) Jeżeli funkcje f i g maja granice właściwe w punkcie x 0, to (f(x) + g(x)) = f(x) + g(x), (1) (f(x) g(x)) = f(x) g(x), (2) (cf(x)) = c f(x), c R, (3) (f(x) g(x)) = f(x) g(x), (4) f(x) g(x) = f(x) x x0 g(x), o ile g(x) 0, (5) (6) 2
3 Uwaga Powyższe twierdzenie jest prawdziwe także dla granic funkcji w i w Przykład Korzystając z twierdzeń o arytmetyce granic funkcji można obliczyć: Dwie ważne granice Można pokazać, że oraz że x 1 x 1 x 5 1 = 1 5 sin x x 0 x = 1 (7) e x 1 = 1 (8) x 0 x Asymptota pozioma Definicja 2 (asymptoty poziomej funkcji) Prosta y = b nazywamy asymptota pozioma funkcji f w wtedy i tylko wtedy, gdy: (f(x) b) = 0 Analogicznie definiujemy asymptotę poziomą w Przykład Prosta y = 0 jest asymptotą poziomą funkcji wykładniczej f(x) = ( 1 2 )x w + bo: Funkcje ciagłe [(1 2 )x 0] = 0 Definicja 3 (funkcji ciągłej w punkcie) Niech x 0 R oraz niech funkcja f będzie określona przynajmniej na otoczeniu O(x 0 ) Funkcja f jest ciagła w punkcie x 0 wtedy i tylko wtedy, gdy f(x) = f(x 0 ) (9) Obrazowo: funkcja jest ciągła w punkcie, gdy jej wykres nie przerywa się w tym punkcie Definicja 4 Przedziałem nazywamy zbiór postaci: (a, b),(a, b], [a, b), [a, b], gdzie a < b, lub (, a), (, a], (a, ), [a, ), (, ), gdzie a R Uwaga Przedziałami otwartymi będziemy nazywać zbiory postaci (a, b), (, a), (a, ), (, ) a, b R Funkcje ciagłe na przedziale otwartym Definicja 5 Funkcja jest ciagła na przedziale otwartym I, jeżeli jest ciagła w każdym punkcie tego zbioru Funkcje ciagłe na przedziale domkniętym co najmniej z jednej strony Mówimy, że funkcja f(x) jest ciągła na przedziale [a, ) jeśli jest ciągła na przedziale otwartym (a, ) i prawostronna granica funkcji f w punkcie a jest równa f(a) itd Obrazowo, funkcja jest ciągłą na przedziale, gdy jej wykres można narysować bez odrywania ręki 3
4 Działania na funkcjach ciagłych Twierdzenie (o ciagłości sumy, róznicy, iloczynu i ilorazu funkcji) Jeżeli funkcje f i g są ciągłe w punkcie x 0, to: 1 funkcja f + g jest ciągła w punkcie x 0 ; 2 funkcja f g jest ciągła w punkcie x 0 ; 3 funkcja f g jest ciągła w punkcie x 0 ; 4 funkcja f g jest ciągła w punkcie x 0, o ile g(x 0 ) 0 Twierdzenie 2 Jeżeli 1 funkcja f jest ciagła w punkcie x 0, 2 funkcja g jest ciagła w punkcie y 0 = f(x 0 ) to funkcja g f jest ciagła w punkcie x 0 ; przypominamy, że g f(x 0 ) = g(f(x 0 )) Można pokazać, że funkcje wielomianowe, wykładnicze, trygonometryczne i ogólnie: wszystkie funkcje elementarne sa ciagłe Iloraz różnicowy Definicja 6 Niech x 0 R oraz niech funkcja f bedzie określona przynajmniej na otoczeniu O(x 0, r), gdzie r > 0 Ilorazem różnicowym funkcji f w punkcie x 0 odpowiadajacym przyrostowi x, gdzie 0 < x < r, zmiennej niezależnej nazywamy liczbę f x = f(x 0 + x) f(x 0 ) x Interpretacja geometryczna ilorazu różnicowego Przypominamy: funkcję postaci y = ax + b nazywamy funkcją liniową Współczynnik kierunkowy a jest równy przyrostowi (zmianie) wartości funkcji liniowej, gdy argument zostanie zwiększony o 1 Iloraz różnicowy jest równy współczynnikowi nachylenia funkcji liniowej, której wykresem jest prosta przechodząca przez punkty (x 0, f(x 0 )), (x 0 + x, f(x 0 + x)) Uwaga Prostą przechodzącą przez dwa dane punkty wykresu nazywamy sieczną Pochodna funkcji Definicja 7 Niech x 0 R oraz niech funkcja f będzie określona przynajmniej na otoczeniu O(x 0 ) Pochodna właściwa funkcji f w punkcie x 0 nazywamy granicę właściwa f f(x) f(x 0 ) (x 0 ) = x x 0 Uwaga Inaczej mówiąc pochodna funkcji f jest granicą ilorazu różnicowego f x gdy x 0 Mamy zatem f (x 0 ) = x 0 f(x 0 + x) f(x 0 ) x Oznaczenia Do oznaczania pochodnej funkcji f w punkcie x 0 stosowane są także symbole df dx (x 0), Df(x 0 ) 4
5 Obliczanie prędkości chwilowej cd Prędkość ołowianej kulki upuszczonej z wysokiej wieży w chwili t 0 jest równa s (t 0 ) Przypominamy: s(t) = gt2 2 Mamy: s s(t) s(t 0 ) g (t 0 ) = = t t0 t t 0 x t0 2 (t + t 0) = gt 0 Wynik, uzyskany na drodze intuicyjnej na początku wykładu: teraz otrzymany w całkowicie formalny sposób 5
Granice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
Granica funkcji wykład 5
Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel rok akademicki 03/04, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t:
Pochodna funkcji: definicja, podstawowe własności wykład 5
Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona
Pochodna funkcji: definicja, podstawowe własności wykład 6
Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy
Analiza matematyczna i algebra liniowa Pochodna funkcji
Analiza matematyczna i algebra liniowa Pochodna funkcji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Wykład 2; rok akademicki 2016/2017 Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Elementy matematyki, wykład 5. Pochodna funkcji. Daniel Wójcik Szymon Łęski.
Elementy matematyki, wykład 5 Pochodna funkcji Daniel Wójcik Szymon Łęski d.wojcik@nencki.gov.pl s.leski@nencki.gov.pl http://www.neuroinf.pl/members/szleski/swps/ http://www.neuroinf.pl/members/danek/homepage/swps/matematyka_wyklad_html/
Ciągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Rachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe
MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.
Rozdział 3. Granica i ciągłość funkcji jednej zmiennej
Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
Zbiory liczbowe i funkcje wykład 1
Zbiory liczbowe i funkcje wykład 1 dr Mariusz Grządziel 6 października 2008 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w
6. Granica funkcji. Funkcje ciągłe.
6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Pochodna funkcji. Niech f : A R, a A i załóżmy, że istnieje α > 0 taka, że
Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Niec f : A R, a A i załóżmy, że istnieje α > 0 taka, że (a α, a + α) A. Definicja Ilorazem różnicowym funkcji f w punkcie a nazywamy
Pojęcie funkcji. Funkcja liniowa
Pojęcie funkcji. Funkcja liniowa dr Mariusz Grządziel Wykład 1; 1 października 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej
Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa
Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Pojęcie funkcji. Funkcje: liniowa, logarytmiczna, wykładnicza
Pojęcie funkcji. Funkcje: liniowa, logarytmiczna, wykładnicza dr Mariusz Grządziel Wykład 1; 10 marca 2013 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość
Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;
Wykłady 11 i 12: Całka oznaczona
Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Granica funkcji. 8 listopada Wykład 4
Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy
Granica funkcji. 27 grudnia Granica funkcji
27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
SIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji
SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 3TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 3TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w sprawie
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Granica funkcji. 16 grudnia Wykład 5
Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Pochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Wykład 10: Całka nieoznaczona
Wykład 10: Całka nieoznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2016/2017 Motywacja Problem 1 Kropla wody o średnicy 0,07 mm
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
Asymptoty funkcji. Pochodna. Zastosowania pochodnej
Temat wykładu: Asymptoty unkcji. Pochodna. Zastosowania pochodnej Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Asymptoty unkcji Zagadnienia 2. Pochodna
Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji
2 grudnia 2014 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2
DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa
Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo
Liczba godzin. Uczeń: wykres ciągu. K P 1 wyraz ciągu. wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego. początkowych wyrazów K P
MATeMAtyka 3 Plan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; wymagania wykraczające - dopuszczający;
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II
Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać
Pochodne. Zbigniew Koza. Wydział Fizyki i Astronomii
Pochodne Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 MOTYWACJA Rozpatrzmy gładką funkcję np. y x = x 2 w okolicach punktu (1,1) x 0 = 1, y 0 = f x 0 = 1 powiększmy wykres wokół (x 0, f(x 0
Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim
Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
1 Zbiory i funkcje. Prolog-zależności funkcyjne w naukach przyrodniczych
1 Zbiory i funkcje Prolog-zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w 16 i 17 wieku: -opis zjawisk takich jak: ruch jednostajnie przyśpieszony; Droga s, jaką
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia
SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów
Wykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Pochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
MATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.
Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Rachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach