Ekstrema globalne funkcji
|
|
- Klaudia Ostrowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 SIMR 2013/14, Analiza 1, wykład 9, Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością najmniejszą funkcji f na D Definicja: Funkcja f : D R ma w punkcie x 0 D maksimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością największą funkcji f na D Uwaga: Jeżeli istnieje maksimum globalne, to odpowiadająca mu wartość największa jest tylko jedna, natomiast moża być kilka punktów x D, w których funkcja osiąga tę wartość. Twierdzenie: Jeżeli x 0 D jest ekstremum globalnym funkcji f : D R to jest też ekstremum lokalnym tej funkcji. Przykład 1: Znaleźć ekstrema globalne f(x) = x 2, x < 1, 2 > Funkcja f jest ciągła, dziedzina D =< 1, 2 > jest zbiorem domkniętym i ograniczonym, więc istnieją oba ekstrema globalne. Funkcja jest różniczkowalna we wnętrzu D. Jeżeli ekstremum jest we wnętrzu D, to ponieważ jest jednocześnie ekstremum lokalnym musi spełniać warunek konieczny f (x) = 0. f (x) = 2x = 0 x 1 = 0 Brzeg składa się z dwóch punktów: x 2 = 1, x 3 = 2. Obliczamy: f(x 1 ) = 0 f(x 2 ) = 1 f(x 3 ) = 4 Najmniejsza z tych wartości 0 jest w punkcie x 1 = 0 - jest to minimum globalne. Największa z tych wartości 4 jest w punkcie x 3 = 4 - jest to maksimum globalne. Przykład 2: Znaleźć ekstrema globalne f(x) = x + 1 x na D =< 1 2, 3) Funkcja f jest ciągła, ale dziedzina D nie jest zbiorem domkniętym i ograniczonym, więc nie muszą istnieć ekstrema globalne. Funkcja jest różniczkowalna na D. Obliczamy f (x) = 1 1 x 2 Badamy znak f f (x) > x > 0 2 x > 1 f jest malejąca na < 1, 1 > i rosnąca na < 1, 3) 2 Obliczamy wartości (granice): f( 1 2 ) = 5 2 f(1) = 2 x 3 f(x) = 10 3 Szkicujemy wykres funkcji. Wnioski: 1
2 Istnieje minimum globalne w punkcie x = 1, o wartości f(1) = 2. Nie istnieje maksimum globalne. Uwaga 1: Jeżeli f jest ciągła to obrazem przedziału jest przedział. W tym przykładzie f(< 1, 3)) =< 2, 10) 2 3 Uwaga 2: Jeżeli f nie ma wartości największej to nie znaczy, że może osiągać dowolnie duże wartości. W naszym przykładzie wartości funkcji mogą być dowolnie blisko wartości 10), ale 3 zawsze są mniejsze. Kresem górnym funkcji nazywamy kres górny zbioru wartości funkcji: sup f(x) = sup f(d) Analogicznie definiuje się kres dolny: inf f(x) W tym przykładzie: sup f(x) = 10 3 inf f(x) = 2 Uwaga: Jeżeli f : D R to ekstrema lokalne (a więc i globalne) mogą (ale nie muszą) być tylko w punktach: 1. x intd, f (x) = 0 2. x intd, pochodna f (x) nie istnieje 3. x D - punkty brzegowe Aby znaleźć ekstrema globalne funkcji określonej na skończonej sumie przedziałów, ciągłej na każdym z tych przedziałów i różniczkowalnej z wyjątkiem być może skończonej liczby punktów, wystarczy obliczyć: wartości (lub granice) na końcach przedziałów, wartości w punktach stacjonarnych: f (x) = 0, wartości w punktach nieróżniczkowalności f. Wartość największa z tej listy jest maksimum globalnym jeśli jest osiągana w punkcie x D. Jeżeli wartość największa z tej listy jest granicą funkcji na końcu przedziału, to maksimum globalne nie istnieje, ale wartość ta jest kresem górnym funkcji. Podobnie jest z minimum globalnym. Zastosowanie w mechanice: Niech dany będzie układ mechaniczny o jednym stopniu swobody w którym działają tylko siły potencjalne. Niech E(x) będzie funkcją energii potencjalnej układu, a x zmienną związaną ze stopniem swobody, opisującą stan układu. Wtedy punkty stacjonarne funkcji E(x) są punktami równowagi układu, minima lokalne są punktami równowagi trwałej, a maksima lokalne są punktami równowagi chwiejnej. Wypukłość funkcji Wypukłość dla figur geometrycznych na płaszczyźnie i brył w przestrzeni jest zdefiniowana następująco: Figura (bryła) F jest wypukła wtedy i tylko wtedy, gdy dla dowolnych punktów A, B F odcinek AB F. Tej definicji wypukłości nie można bezpośrednio wykorzystać do zdefiniowania wypukłości funkcji. 2
3 Definicja: f : D R jest wypukła wtedy i tylko wtedy, gdy zbiór {(x, y) : x D, y f(x)} jest wypukły. Definicja: f : D R jest wklęsła wtedy i tylko wtedy, gdy zbiór {(x, y) : x D, y f(x)} jest wypukły. Uwaga: Jeżeli f : D R jest wypukła lub wklęsła to dziedziną tej funkcji musi być przedział. Twierdzenie: Funkcja f : (a, b) R jest wypukła ( x 1, x 2 (a, b), t < 0, 1 >) f(x 1 + t(x 2 x 1 )) f(x 1 ) + t(f(x 2 ) f(x 1 )) Twierdzenie to oznacza, że część wykresu funkcji wypukłej wycięta dowolną prostą sieczną leży pod tą prostą. Twierdzenie: Funkcja f : (a, b) R jest wklęsła x 1, x 2 (a, b), t (0, 1)f(x 1 + t(x 2 x 1 )) f(x 1 ) + t(f(x 2 ) f(x 1 )) Twierdzenie: Funkcja różniczkowalna f : (a, b) R jest wypukła wtedy i tylko wtedy, gdy jej wykres leży nad każdą prostą styczną do wykresu. Funkcja jest wklęsła wtedy i tylko wtedy, gdy jej wykres leży pod każdą prostą styczną do wykresu. Definicja: Niech f : D R będzie funkcją ciągłą. Punkt x D nazywamy punktem przegięcia funkcji f wtedy i tylko 1. ( ɛ > 0)(x ɛ, x + ɛ) D 2. f jest wypukła na przedziale (x ɛ, 0) oraz wklęsła na przedziale (0, x + ɛ) lub f jest wklęsła na przedziale (x ɛ, 0) oraz wypukła na przedziale (0, x + ɛ) Twierdzenie Niech f : (a, b) R będzie dwukrotnie różniczkowalna. Funkcja f jest wypukła na (a, b) wtedy i tylko wtedy, gdy x (a, b) f (x) 0. Funkcja jest wklęsła na (a, b) wtedy i tylko wtedy, gdy x (a, b) f (x) 0. Przykład: Zbadać przedziały wypukłości, wklęsłości oraz znaleźć punkty przegięcia funkcji: f(x) = x 3 3x Dziedzina D = (, ) f (x) = 3x 2 3, D = (, ) f (x) = 6x, D = (, ) Rozwiązujemy nierówność: f (x) > 0 6x > 0 x > 0 Analogicznie: f (x) < 0 x < 0 Stąd: f jest wypukła na przedziale < 0, ) f jest wklęsła na przedziale (, 0 > f ma punkt przegięcia w x = 0 Twierdzenie: Jeżeli f : D R jest wypukła to dla dowolnych punktów x 1, x 2,... x n D oraz dowolnych dodatnich liczb p 1, p 2,... p n takich, że p 1 + p p n = 1 zachodzi: f(p 1 x 1 + p 2 x p n x n ) p 1 f(x 1 ) + p 2 f(x 2 ) +... p n f(x n ) Dowód: Ustawione w kolejności rosnącej x i punkty W i = ( x i, f(x i ) ) są wierzchołkami wielokąta wypukłego. Jeżeli w wierzchołkach tych umieścimy masy p i to środek ciężkości układu tych punktów będzie leżał wewnątrz wielokąta, a więc nad wykresem funkcji. Współrzędne środka ciężkości: S x = p 1 x 1 + p 2 x p n x n 3
4 S y = p 1 f(x 1 ) + p 2 f(x 2 ) +... p n f(x n ) Środek ciężkości będzie leżał nad wykresem funkcji: f(s x ) S y Uwaga: Podobne twierdzenie zachodzi dla funkcji wklęsłych. Przykład: Pokazać, że dla x 1, x 2,... x n > 0 zachodzi: n x1 x 2... x n x 1 + x x n n Uwaga: Lewa strona nierówności nazywa się średnią geometryczną, a prawa średnią arytmetyczną. Funkcja f(x) = ln x jest wklęsła na całej dziedzinie D = (0, ) ponieważ: f (x) = ( 1 ) 1 = x x < 0 2 Wobec tego dla p i = 1 mamy: n ln( 1 x n x n x n n) 1 ln(x n 1) + 1 ln(x n 2) ln(x n n) Czyli: x 1 + x x n n n x 1 x 2... x n Asymptoty funkcji Asymptotą wykresu funkcji nazywamy prostą l taką, że punkty pewnej gałęzi wykresu funkcji P x (x, f(x)) zliżają się do tej prostej i jednocześnie oddalają się nieskończenie daleko od początku układu współrzędnych: x a + d(p x, l) = 0 x a + d(p x, O) = gdzie a może być skończone, +,, a granica może być też lewostronna. d oznacza odległość, a O(0, 0) początek układu współrzędnych. Jeżeli a R to asymptotę nazywamy pionową. Jeżeli a = + lub to asymptotę nazywamy ukośną. Szczególnym przypadkiem asymptoty ukośnej jest asymptota pozioma: współczynnik kierunkowy asymptoty jest równy zero. Twierdzenie: Funkcja f : D R ma asymptotę pionową lewostronną x = a, a R wtedy i tylko wtedy, gdy f(x) = ± x a Twierdzenie: Funkcja f : D R ma asymptotę pionową prawostronną x = a, a R wtedy i tylko wtedy, gdy f(x) = ± x a + Twierdzenie: Funkcja f : D R ma asymptotę ukośną y = ax + b w + wtedy i tylko f(x) a = x x b = x (f(x) ax) Twierdzenie: Funkcja f : D R ma asymptotę ukośną y = ax + b w wtedy i tylko a = b = x x f(x) x (f(x) ax) Przebieg zmienności funkcji Aby zbadać przebieg zmienności funkcji f(x) badamy następujące elementy: 4
5 1. Dziedzina 2. Ciągłość, parzystość, nieparzystość, okresowość, miejsca zerowe 3. Granice lub wartości funkcji (a) Na każdym końcu przedziału (b) W każdym punkcie nieciągłości 4. Asymptoty (a) Pionowe (b) Ukośne w ± 5. Pochodna f (x) (a) Dziedzina (b) Znak (c) Przedziały monotoniczności (d) Ekstrema lokalne 6. Druga pochodna f (x) (a) Dziedzina (b) Znak (c) Przedziały wypukłości i wklęsłości (d) Punkty przegięcia 7. Tabela i wykres Przykład: Zbadać przebieg zmienności funkcji f(x) = Rozwiązanie: Dziedzina funkcji: D = (, 0) (0, ) Funkcja jest ciągła na całej dziedzinie. Dziedzina jest symetryczna, badamy parzystość f: f( x) = ln( x)2 ln x2 = = f(x) x x Funkcja jest nieparzysta. Wystarczy więc ją zbadać na zbiorze D 1 = (0, ). Na przedziale (, 0) wykres będzie symetryczny. Miejsca zerowe: f(x) = 0 dla x = 1 Obliczamy granice: ln x 2 f(x) = x 0 + x 0 + x = 0 = + ln x 2 f(x) = x x x =[ ] [H] x 2x x 2 1 = x 2 x = 0 Asymptoty: Z obliczonych wcześniej granic wynika, że funkcja ma asymptotę pionową x = 0 i poziomą y = 0 w +. Badamy pierwszą pochodną: 5 ln x2 x
6 f (x) = 2x x 2 x ln x 2 x 2 = 2 ln x2 x 2 D = (0, ) Rozwiązujemy nierówność f (x) > 0. Ponieważ mianownik jest dodatni: 2 ln x 2 > ln x > 0 ln x < 1 x < e Wniosek: Funkcja f(x) jest rosnąca na przedziale (0, e >, malejąca na przedziale < e, ), ma więc w x = e maksimum lokalne. Jest to jedyne ekstremum na D 1. Badamy drugą pochodną: f (x) = 2x x 2 x 2 (2 ln x 2 )2x x 4 = ln x2 x 3 D = (0, ) Rozwiązujemy nierówność f (x) > 0. Ponieważ mianownik jest dodatni: ln x 2 > ln x > 0 ln x > 3 2 x > e 3 2 Wniosek: Funkcja f(x) jest wklęsła na przedziale (0, e 3 2 ), wypukła na przedziale (e 3 2, ), ma więc w x = e 3 2 punkt przegięcia. Tabela: x e... e f (x) e 3 f (x) 0 + f(x) 2 e 3e 3 e 0 Wykres: zaznaczamy punkty charakterystyczne z tabeli, rysujemy asymptoty, rysujemy wykres na D 1, a następnie symetryczny na zbiorze (, 0) 6
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Bardziej szczegółowoFunkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Bardziej szczegółowoPochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Bardziej szczegółowoWKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
Bardziej szczegółowoWykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Bardziej szczegółowo9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Bardziej szczegółowoPochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Bardziej szczegółowoWykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
Bardziej szczegółowoRACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Bardziej szczegółowo22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Bardziej szczegółowoMateriały do ćwiczeń z matematyki - przebieg zmienności funkcji
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.
Bardziej szczegółowo1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Bardziej szczegółowoAnaliza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Bardziej szczegółowo10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Bardziej szczegółowoWykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Bardziej szczegółowoPochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
Bardziej szczegółowoPochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
Bardziej szczegółowoRachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
Bardziej szczegółowoWykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Bardziej szczegółowoAnaliza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
Bardziej szczegółowoWykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Bardziej szczegółowo2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Bardziej szczegółowoPochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Bardziej szczegółowo4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo
Bardziej szczegółowoMateriały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
Bardziej szczegółowoWykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y
Bardziej szczegółowoZadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Bardziej szczegółowoII. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Bardziej szczegółowoAgata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
Bardziej szczegółowoRachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Bardziej szczegółowoWzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Bardziej szczegółowo4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)
Bardziej szczegółowoFakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Bardziej szczegółowo5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 5. Badanie w Krakowie) przebiegu
Bardziej szczegółowoBadanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Bardziej szczegółowoNotatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale
Bardziej szczegółowoCiągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji
Bardziej szczegółowoBADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
Bardziej szczegółowoPochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
Bardziej szczegółowoEgzamin podstawowy (wersja przykładowa), 2014
Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Bardziej szczegółowoMatematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Bardziej szczegółowoCiągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Bardziej szczegółowo(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
Bardziej szczegółowo11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Bardziej szczegółowoWYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
Bardziej szczegółowoWykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w
Bardziej szczegółowoNastępnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Bardziej szczegółowoFunkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Bardziej szczegółowoAnaliza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Bardziej szczegółowo13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Bardziej szczegółowoRozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
Bardziej szczegółowoEGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Bardziej szczegółowo6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Bardziej szczegółowoWYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoAnaliza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
Bardziej szczegółowoPochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
Bardziej szczegółowoPochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Bardziej szczegółowoNotatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Bardziej szczegółowoGranice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
Bardziej szczegółowoWstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
Bardziej szczegółowoIX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Bardziej szczegółowoGranica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
Bardziej szczegółowoZadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 (G-PG). Prowadzący dr Andrzej Rychlewicz
Zadania optymalizacyjne w szkole ponadgimnazjalnej. Materiały do przedmiotu Metodyka Nauczania Matematyki 2 G-PG). Prowadzący dr Andrzej Rychlewicz Przeanalizujmy następujące zadanie. Zadanie. próbna matura
Bardziej szczegółowoTematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Bardziej szczegółowoWymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Bardziej szczegółowoFUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Bardziej szczegółowox 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Bardziej szczegółowoGranice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
Bardziej szczegółowo1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Bardziej szczegółowoWykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Bardziej szczegółowoTreści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowo1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Bardziej szczegółowoTO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI
TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Bardziej szczegółowoTreści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoTreści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoJolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Bardziej szczegółowoFunkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoPodstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowof(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
Bardziej szczegółowoCiągłość funkcji i podstawowe własności funkcji ciągłych.
Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)
Bardziej szczegółowo1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
Bardziej szczegółowoMATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe
MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.
Bardziej szczegółowoZestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)
Bardziej szczegółowoGranica funkcji wykład 5
Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g
Bardziej szczegółowo< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:
Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że
Bardziej szczegółowoOpracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
Bardziej szczegółowoPoziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
Bardziej szczegółowoAnaliza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI
Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowo