Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
|
|
- Bartłomiej Ostrowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05
2 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0.
3 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. Mówimy, że funkcja ta ma w punkcie 0 minimum lokalne, jeżeli istnieje takie sa siedztwo S punktu 0, że S
4 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. Mówimy, że funkcja ta ma w punkcie 0 minimum lokalne, jeżeli istnieje takie sa siedztwo S punktu 0, że S f () > f ( 0 ).
5 MAKSIMUM LOKALNE y f ( 0 ) y = f () 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0.
6 MAKSIMUM LOKALNE y f ( 0 ) y = f () 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. Mówimy, że funkcja ta ma w punkcie 0 maksimum lokalne, jeżeli istnieje takie sa siedztwo S punktu 0, że S
7 MAKSIMUM LOKALNE y f ( 0 ) y = f () 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. Mówimy, że funkcja ta ma w punkcie 0 maksimum lokalne, jeżeli istnieje takie sa siedztwo S punktu 0, że S f () < f ( 0 ).
8 GDY JEST EKSTREMUM, TO... WARUNEK KONIECZNY ISTNIENIA EKSTREMUM. Jeżeli funkcja f jest różniczkowalna w przedziale otwartym i ma ekstremum w punkcie 0 z tego przedziału, to f ( 0 ) = 0. Dowód. Załóżmy, że f ma w 0 minimum. Wtedy f () f ( 0 ) > 0 dla z pewnego sa siedztwa S punktu 0. Zatem dla S iloraz różnicowy f () f ( 0) 0 jest ujemny dla < 0 oraz dodatni dla > 0. Oznacza to, że f () f ( lim 0 ) f () f ( oraz lim 0 ) Ponieważ obie granice sa sobie równe (pochodna istnieje), wiȩc f f () f ( ( 0 ) = lim 0 ) 0 0 = 0. Podobnie, gdy f ma w 0 maksimum, to granica lewostronna ilorazu różnicowego jest nieujemna, a prawostronna jest niedodatnia. Ponieważ obie granice sa sobie równe, wiȩc granica ta to zero.
9 KIEDY WYSTĘPUJE EKSTREMUM? WARUNEK WYSTARCZAJA CY ISTNIENIA EKSTREMUM (I). Załóżmy że funkcja f jest różniczkowalna w pewnym sa siedztwie punktu 0 i że jest cia gła w 0. Jeżeli pochodna f przy przejściu przez 0 zmienia znak z + na -, to funkcja f ma maksimum lokalne w tym punkcie. Jeżeli pochodna f przy przejściu przez 0 zmienia znak z - na +, to funkcja f ma minimum lokalne w tym punkcie. Dowód. Załóżmy, że istnieje sa siedztwo S punktu 0, że f () > 0 dla < 0, S oraz f () < 0 dla > 0, S. Oznacza to, że funkcja f przechodzi z rosna cej w maleja ca, a wiȩc f ( 0 ) > f () dla < 0, S oraz f ( 0 ) > f () dla > 0, S. Zatem f ma maksimum lokalne w 0. Podobnie, jeżeli pochodna f przy przejściu przez 0 zmienia znak z - na +, to funkcja f przechodzi z maleja cej w rosna ca i ma minimum lokalne w 0.
10 KIEDY WYSTĘPUJE EKSTREMUM? WARUNEK WYSTARCZAJA CY ISTNIENIA EKSTREMUM (II). Załóżmy że funkcja f ma cia gła pochodna drugiego rzȩdu w pewnym otoczeniu punktu 0 oraz że f ( 0 ) = Jeżeli f ( 0 ) < 0, to funkcja f ma w punkcie 0 maksimum lokalne. 2. Jeżeli f ( 0 ) > 0, to funkcja f ma w punkcie 0 minimum lokalne. 3. Załóżmy, że f ( 0 ) = 0 i że f () ma pochodne wyższych rzȩdów wła cznie z pochodna f (n) () oraz załóżmy że f (n) () jest cia gła w 0. Ponadto niech f ( 0 ) = = f (n 1) ( 0 ) = 0, f (n) ( 0 ) 0. Jeżeli n jest liczba nieparzysta, to funkcja f nie ma ekstremum w 0. Jeżeli n jest liczba parzysta, to f ma ekstremum lokalne w 0 i to maksimum, jeśli f (n) ( 0 ) < 0, a minimum jeśli f (n) ( 0 ) > 0.
11 WARUNEK WYSTARCZAJA CY ISTNIENIA EKSTREMUM (II). Dowód tylko czȩści 1 i 2. Jeżeli f ( 0 ) < 0 i f jest cia gła, to istnieje takie otoczenie Q punktu 0, że f () < 0 dla Q. Ponieważ f = (f ), wiȩc f jest funkcja maleja ca w Q. Zatem z warunku f ( 0 ) = 0 wnioskujemy, że f () > 0 dla < 0, Q oraz f () < 0 dla > 0, Q. Z warunku wystarczaja cego (I) wiemy, że w 0 funkcja f ma maksimum lokalne. Podobnie, jeśli f ( 0 ) > 0, to istnieje takie otoczenie Q punktu 0, że funkcja f jest rosna ca w Q. Oznacza to, że f przy przejściu przez 0 zmienia znak z - na +, a zatem funkcja f ma minimum lokalne w 0.
12 PRZYKŁAD 1. W których punktach funkcja f () = osiąga ekstremum? D f = R f () = = 2 ( + 1)( 1)( 2) D f = R = D f Miejsca zerowe pochodnej to 1 = 0, 2 = 1, 3 = 1, 4 = 2. Są to punkty podejrzane (w innych punktach funkcja f () na pewno nie osiąga ekstremum, w tych być może osiąga). Nie musimy rysować wykresu funkcji pochodnej, który wygląda tak:
13 Wykres funkcji pochodnej. y y = f ()
14 f () = 2 ( + 1)( 1)( 2) Nie musimy rysować wykresu funkcji pochodnej. Wystarczy, że ustalimy jej znaki. Miejsca zerowe pochodnej to 1 = 0, 2 = 1, 3 = 1, 4 = znaki f () Oznacza to, że funkcja f osiąga minimum lokalne w punkcie 2 = 1 oraz 4 = 2, osiąga też maksimum lokalne dla 3 = 1.
15 Ilustracja: wykres funkcji f (). Funkcja f osiąga minimum lokalne w punkcie 2 = 1 oraz 4 = 2, osiąga też maksimum lokalne dla 3 = 1. y y = f ()
16 PRZYKŁAD 2. Znajdź ekstrema funkcji f () = 3 2 ( 5). D f = R f () = ( 5) = = D f = R \ {0} D f Miejsce zerowe pochodnej to 1 = 2. Punkty podejrzane to 1 = 2 oraz 2 = 0 (w pierwszym pochodna się zeruje, w dugim pochodna nie istnieje, choć punkt ten należy do dziedziny funkcji).
17 f () = Ustalamy znaki pochodnej. Punty podejrzane : 1 = 2 oraz 2 = znaki f () Oznacza to, że funkcja f osiąga minimum lokalne w punkcie 1 = 2 oraz maksimum lokalne dla 2 = 0.
18 Ilustracja: wykres funkcji f (). Funkcja f osiąga minimum lokalne w punkcie 1 = 2 oraz maksimum lokalne dla 2 = 0. y y = f ()
19 EKSTREMA GLOBALNE DEFINICJA. Liczbȩ M nazywamy wartościa najwiȩksza (maksimum globalnym) funkcji f w zbiorze D, jeżeli 1 D f ( 1 ) = M D f () M. y M y = f () 1
20 EKSTREMA GLOBALNE DEFINICJA. Liczbȩ m nazywamy wartościa najmniejsza (minimum globalnym) funkcji f w zbiorze D, jeżeli 2 D f ( 2 ) = m D f () m. y M y = f () 2 1 m
21 Wartość największa M i najmniejsza m funkcji f () w zbiorze D. y M y = f () 2 1 m
22 dla nas ekstrema globalne istnieją zawsze TWIERDZENIE. Funkcja cia gła w przedziale domkniȩtym osia ga w pewnych punktach tego przedziału swoja wartość najwiȩksza i najmniejsza.
23 Jak znaleźć wartości naj...? Aby znaleźć ekstrema globalne funkcji f w przedziale [a, b] wystarczy: 1. znaleźć punkty podejrzane o ekstremum w (a, b) (to znaczy punkty, w których pochodna jest równa zero lub nie istnieje); 2. obliczyć wartości funkcji f w tych punktach; 3. obliczyć wartości funkcji f w punktach a, b (na końcach przedziału); 4. z uzyskanych liczb wybrać najwiȩksza i najmniejsza.
24 Jak znaleźć wartości naj...? Aby znaleźć ekstrema globalne funkcji f w przedziale [a, b] wystarczy: 1. znaleźć punkty podejrzane o ekstremum w (a, b) (to znaczy punkty, w których pochodna jest równa zero lub nie istnieje); 2. obliczyć wartości funkcji f w tych punktach; 3. obliczyć wartości funkcji f w punktach a, b (na końcach przedziału); 4. z uzyskanych liczb wybrać najwiȩksza i najmniejsza.
25 Jak znaleźć wartości naj...? Aby znaleźć ekstrema globalne funkcji f w przedziale [a, b] wystarczy: 1. znaleźć punkty podejrzane o ekstremum w (a, b) (to znaczy punkty, w których pochodna jest równa zero lub nie istnieje); 2. obliczyć wartości funkcji f w tych punktach; 3. obliczyć wartości funkcji f w punktach a, b (na końcach przedziału); 4. z uzyskanych liczb wybrać najwiȩksza i najmniejsza.
26 Jak znaleźć wartości naj...? Aby znaleźć ekstrema globalne funkcji f w przedziale [a, b] wystarczy: 1. znaleźć punkty podejrzane o ekstremum w (a, b) (to znaczy punkty, w których pochodna jest równa zero lub nie istnieje); 2. obliczyć wartości funkcji f w tych punktach; 3. obliczyć wartości funkcji f w punktach a, b (na końcach przedziału); 4. z uzyskanych liczb wybrać najwiȩksza i najmniejsza.
27 Jak znaleźć wartości naj...? Aby znaleźć ekstrema globalne funkcji f w przedziale [a, b] wystarczy: 1. znaleźć punkty podejrzane o ekstremum w (a, b) (to znaczy punkty, w których pochodna jest równa zero lub nie istnieje); 2. obliczyć wartości funkcji f w tych punktach; 3. obliczyć wartości funkcji f w punktach a, b (na końcach przedziału); 4. z uzyskanych liczb wybrać najwiȩksza i najmniejsza.
28 Jak znaleźć wartości naj...? Aby znaleźć ekstrema globalne funkcji f w przedziale [a, b] wystarczy: 1. znaleźć punkty podejrzane o ekstremum w (a, b) (to znaczy punkty, w których pochodna jest równa zero lub nie istnieje); 2. obliczyć wartości funkcji f w tych punktach; 3. obliczyć wartości funkcji f w punktach a, b (na końcach przedziału); 4. z uzyskanych liczb wybrać najwiȩksza i najmniejsza.
29 Jak znaleźć wartości naj...? PRZYKŁAD. Znajdź wartość najwiȩksza i najmniejsza funkcji f () = 3 ( 2 1) 2 w przedziale [ 2, 1 2 ]. Dziedzina funkcji: D f = R. Szukamy punktów podejrzanych o ekstremum. Pochodna: f () = ( ( 2 1) 2 3 ) = 2 3 ( 2 1) = Dziedzina pochodnej: D f = R \ { 1, 1}. Oczywiście, f () = 0 = 0. Punkty podejrzane o ekstremum lokalne funkcji f to 0 = 0, 1 = 1, 2 = 1 (w pierwszym z nich pochodna siȩ zeruje, w pozostałych pochodna nie istnieje, choć funkcja istnieje).
30 Znajdź wartość najwiȩksza i najmniejsza funkcji f () = 3 ( 2 1) 2 w przedziale [ 2, 1 2 ]. Punkty podejrzane o ekstremum lokalne funkcji f to 0 = 0, 1 = 1, 2 = 1. Punkty podejrzane należa ce do rozważanego przedziału [ 2, 1 2 ] to 0 = 0, 1 = 1. Obliczamy: f (0) = 1, f ( 1) = 0, f ( 2) = 3 9, f ( 1 2 ) = Wartość najwiȩksza to 3 9, wartość najmniejsza to 0.
31 Wartością najwiȩksza funkcji f () = 3 ( 2 1) 2 w przedziale [ 2, 1 2 ] jest 3 9, wartością najmniejszą jest 0. y y = 3 ( 2 1)
32 Wartością najwiȩksza funkcji f () = 3 ( 2 1) 2 w przedziale [ 2, 1 2 ] jest 3 9, wartością najmniejszą jest 0. y y = 3 ( 2 1)
33 Wartością najwiȩksza funkcji f () = 3 ( 2 1) 2 w przedziale [ 2, 1 2 ] jest 3 9, wartością najmniejszą jest 0. y 3 9 y = 3 ( 2 1)
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Bardziej szczegółowoZASTOSOWANIA POCHODNEJ FUNKCJI
Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,
Bardziej szczegółowoBADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
Bardziej szczegółowoFunkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Bardziej szczegółowoWykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Bardziej szczegółowoPochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Bardziej szczegółowo22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Bardziej szczegółowoEkstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
Bardziej szczegółowoVIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Bardziej szczegółowoMateriały do ćwiczeń z matematyki - przebieg zmienności funkcji
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.
Bardziej szczegółowoPochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Bardziej szczegółowoWykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Bardziej szczegółowoWzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Bardziej szczegółowo10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Bardziej szczegółowoWKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
Bardziej szczegółowo1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Bardziej szczegółowoWykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Bardziej szczegółowo13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.
13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje
Bardziej szczegółowoPochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
Bardziej szczegółowoPochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
Bardziej szczegółowoPochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim
Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy
Bardziej szczegółowoWykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Bardziej szczegółowoWYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:
Bardziej szczegółowoRACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Bardziej szczegółowoWykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
Bardziej szczegółowoWykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Bardziej szczegółowoMatematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Bardziej szczegółowoII. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Bardziej szczegółowoAnaliza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI
Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji
Bardziej szczegółowoRachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Bardziej szczegółowo5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 5. Badanie w Krakowie) przebiegu
Bardziej szczegółowoPochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
Bardziej szczegółowoRachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
Bardziej szczegółowoRachunek różniczkowy funkcji dwóch zmiennych
Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza
Bardziej szczegółowoFunkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Bardziej szczegółowoEkstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Bardziej szczegółowoFunkcje dwóch zmiennych, pochodne cząstkowe
Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi
Bardziej szczegółowoKONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Bardziej szczegółowolim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Bardziej szczegółowo4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)
Bardziej szczegółowoPochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Bardziej szczegółowoZestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoPochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Bardziej szczegółowoDefinicja pochodnej cząstkowej
1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem
Bardziej szczegółowoIX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Bardziej szczegółowoAnaliza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Bardziej szczegółowoFunkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy
Bardziej szczegółowoNotatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale
Bardziej szczegółowoZadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Bardziej szczegółowoPochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
Bardziej szczegółowoPochodna funkcji: definicja, podstawowe własności wykład 5
Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona
Bardziej szczegółowo11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowo2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Bardziej szczegółowoFunkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoFakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Bardziej szczegółowo1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
Bardziej szczegółowo6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Bardziej szczegółowoRozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
Bardziej szczegółowoPochodna funkcji: definicja, podstawowe własności wykład 6
Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga
Bardziej szczegółowoBadanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Bardziej szczegółowoNotatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Bardziej szczegółowoTemat: Zastosowania pochodnej
Temat: Zastosowania pochodnej A n n a R a j u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga A n n a R a j u r a, M a
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoRachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
Bardziej szczegółowof(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
Bardziej szczegółowoCiągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Bardziej szczegółowoWykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Bardziej szczegółowoI. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Bardziej szczegółowoWykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Bardziej szczegółowo1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Bardziej szczegółowoMateriały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
Bardziej szczegółowoRozwiązaniem jest zbiór (, ] (5, )
FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz
Bardziej szczegółowoFunkcja jest różnowartościowa w zbiorze A wtedy i tylko wtedy, gdy różnym argumentom funkcja ta przyporządkowuje różne wartości.
Gdy mamy daną funkcję, poza określeniem jej dziedziny i miejsca zerowego możemy badad szczególne własności, takie jak: monotonicznośd, różnowartościowośd, parzystośd, nieparzystośd. Na temat monotoniczności
Bardziej szczegółowoWykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w
Bardziej szczegółowoEgzamin podstawowy (wersja przykładowa), 2014
Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz
Bardziej szczegółowoPochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Bardziej szczegółowoWstęp do analizy matematycznej
Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w
Bardziej szczegółowo2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Bardziej szczegółowoElementy metod numerycznych
Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego
Bardziej szczegółowo7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Bardziej szczegółowoZadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Bardziej szczegółowoANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Bardziej szczegółowoWykład 6. Funkcje Różniczkowalne - ciąg dalszy. są różniczkowalne w punkcie p i zachodzą wzory:
Wykład 6 Funkcje Różniczkowalne - cią dalszy Twierdzenie o arytmetycznyc własnościac pocodnej Załóżmy, że funkcje f i są różniczkowalne w punkcie p. Wtedy funkcje f +, f, f, i, jeśli ( p) 0, to również
Bardziej szczegółowoCiągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Bardziej szczegółowoRoksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
Bardziej szczegółowo1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
Bardziej szczegółowoFUNKCJA I JEJ WŁASNOŚCI
FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie
Bardziej szczegółowoAnaliza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
Bardziej szczegółowoAB = x a + yb y a + zb z a 1
1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor
Bardziej szczegółowoI Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x
I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,
Bardziej szczegółowoMatematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Bardziej szczegółowoMetody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Bardziej szczegółowo( ) Pochodne. Załómy, e funkcja f jest okrelona w pewnym otoczeniu punktu x 0. Liczb
Pocodne Załómy, e unkcja jest okrelona w pewnym otoczeniu punktu. Liczb ( + ) ( ) nazywamy ilorazem rónicowym unkcji w punkcie dla przyrostu. Pocodn ( ) unkcji w punkcie nazywamy granic ilorazu rónicowego,
Bardziej szczegółowo