Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
|
|
- Dominika Maj
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład , M.A-B 1 / 34
2 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a, (e x ) = e x (log a x) = 1 x ln a, (tg x) = 1 cos 2 x (ctg x) = 1 sin 2 x (arc sin x) = 1 1 x 2 (arc cos x) 1 = 1 x 2 (ln x) = 1 x (sin x) = cos x (cos x) = sin x (arc tg x) = x 2 (arc ctg x) = x 2 Informatyka Stosowana Wykład , M.A-B 2 / 34
3 Pochodne z działań na funkcjach (cf (x)) = c f (x) (f (x) ± g(x)) = f (x) ± g (x) (f (x) g(x)) = f (x) g(x) + f (x) g (x) ( ) f (x) = f (x) g(x) f (x) g (x) g(x) g 2 (x) (f (g(x))) = f (g(x)) g (x) Informatyka Stosowana Wykład , M.A-B 3 / 34
4 Pochodne wyższych rzędów Pochodna n-tego rzędu funkcji f określamy wzorem f (n) (x) = (f (n 1) (x)) czyli jest to pochodna z pochodnej rzędu (n 1). Zatem f (x) = (f (x)) - druga pochodna jest pochodna z pierwszej pochodnej f (x) = f (3) (x) = (f (x)) f (n) (x) = (f (n 1) (x)) - trzecia pochodna jest pochodna z drugiej pochodnej... - n-ta pochodna jest pochodna z (n-1)-szej pochodnej Informatyka Stosowana Wykład , M.A-B 4 / 34
5 Reguła de L Hospitala Informatyka Stosowana Wykład , M.A-B 5 / 34
6 Regułę de L Hospitala stosujemy do liczenia granic typu lim x x 0 f (x) g(x) albo f (x) lim x ± g(x), w których po podstawieniu granicznej wartości x otrzymujemy symbol [ 0 0 ] albo [ ]. Zakładamy, że f i g sa funkcjami różniczkowalnymi. Wersja skrócona twierdzenia : f (x) lim x A g(x) = co rozumiemy następujaco: [ 0 0 albo f " jeśli istnieje granica lim (x) x A g (x) również wynosi k." ] H = lim x A f (x) g (x) = k, f (x) i wynosi k, to granica lim x A g(x) Informatyka Stosowana Wykład , M.A-B 6 / 34
7 Przykład ln sin x f) lim x 0 + ln tg x g) lim x ln x x 0 + h) lim x ln(x 1) x 1 + Wskazówka W przykładzie g) skorzystać z przedstawienia f g = [0 ] = f 1 g albo = g 1 f Wskazówka W przykładzie h) skorzystać z tego, że dla wyrażeń f g przedstawiajacych symbole 1, 0, 0 0 mamy przedstawienie: f g = e g ln f. Dodatkowo z granica możemy przejść wtedy do wykładnika funkcji wykładniczej. Informatyka Stosowana Wykład , M.A-B 7 / 34
8 Rozwiazanie przykładu g): ln x lim x ln x = [0 ( )] = lim x 0 + x x = [ ] H (ln x) = lim = x 0 + ( 1 x ) = lim x x 1 x 2 = lim ( x) = 0. x 0 + Informatyka Stosowana Wykład , M.A-B 8 / 34
9 Rozwiazanie przykładu h) : bo lim x ln(x 1) = [1 ] = lim eln(x 1) ln x = e lim [ln(x 1) ln x] x 1 + x 1 + x 1 + = e ( ) = e 0 = 1, ln(x 1) ( ) = lim [ln(x 1) ln x] = [( ) 0] = lim x 1 + x H (ln(x 1)) = lim x 1 + ( 1 ln x ) H (x(ln x) 2 ) = lim x 1 + ( x + 1) 1 x 1 = lim x ln 2 x x (ln x) ln x = lim x ln x = x(ln x) 2 = lim x 1 + x + 1 = = = 0. [ ] [ ] 0 0 Informatyka Stosowana Wykład , M.A-B 9 / 34
10 Monotoniczność funkcji Informatyka Stosowana Wykład , M.A-B 10 / 34
11 Twierdzenie o monotoniczności funkcji Jeżeli dla każdego x z pewnego przedziału A funkcja f spełnia warunek: f (x) = 0, to f jest stała dla x A f (x) > 0, to f jest rosnaca dla x A f (x) < 0, to f jest malejaca dla x A Uwaga Jeżeli f (x) 0 dla każdego x A, przy czym równość f (x) = 0 zachodzi tylko dla skończonej liczby punktów tego przedziału (a nie na pewnym przedziale), to funkcja f jest rosnaca dla x A. Analogicznie dla funkcji malejacej. Informatyka Stosowana Wykład , M.A-B 11 / 34
12 Schemat 1) obliczyć f (x) 2) wyznaczyć miejsca zerowe pochodnej, czyli f (x) = 0 3) zbadać znak f (kiedy f (x) > 0, < 0) albo sporzadzić wykres f i odczytać z wykresu 4) Wnioski Przykład Znaleźć przedziały monotoniczności funkcji a) f (x) = x 1 + x 2 b) f (x) = (x + 1)e x c) f (x) = ln 3 x 3 ln x Informatyka Stosowana Wykład , M.A-B 12 / 34
13 Ekstrema funkcji Informatyka Stosowana Wykład , M.A-B 13 / 34
14 Definicja Funkcja f ma w x 0 R minimum lokalne (właściwe), jeśli δ>0 x (x0 δ,x 0 +δ) f (x) > f (x 0 ). Funkcja f ma w x 0 R maksimum lokalne (właściwe), jeśli δ>0 x (x0 δ,x 0 +δ) f (x) < f (x 0 ). Czyli można wskazać takie (małe) otoczenie punktu x 0 w którym wartość f (x 0 ) jest najmniejsza (odpowiednio największa). Informatyka Stosowana Wykład , M.A-B 14 / 34
15 Twierdzenie Fermata Jeżeli funkcja f ma ekstremum lokalne w punkcie x 0 oraz f (x 0 ) istnieje, to f (x 0 ) = 0. Zauważmy, że implikacja odwrotna jest fałszywa, tzn. sam fakt że punkt x 0 jest miejscem zerowym pochodnej nie gwarantuje tego, że f (x 0 ) jest ekstremum lokalnym. Wystarczy rozważyć funkcję f (x) = x 3. f (x) = (x 3 ) = 3x 2 punkt podejrzany: f (x 0 ) = 0 dla x 0 = 0, ale ekstremum lokalnego w zerze nie ma (patrz wykres). Informatyka Stosowana Wykład , M.A-B 15 / 34
16 Jeżeli funkcja ma ekstremum lokalne w punkcie oraz jeżeli w tym punkcie wykres funkcji ma styczna, to ta styczna jest pozioma. Informatyka Stosowana Wykład , M.A-B 16 / 34
17 Fakt - o lokalizacji ekstremów funkcji (tzw. punkty podejrzane) Funkcja może mieć ekstrema lokalne tylko w punktach, w których pochodna równa się zero albo w punktach, w których jej pochodna nie istnieje. Twierdzenie - I warunek dostateczny Jeżeli f (x 0 ) = 0 oraz f (x) zmienia w x 0 znak, to f ma w x 0 ekstremum lokalne. Jeżeli zmiana: + - maksimum lokalne w x minimum lokalne w x 0 Informatyka Stosowana Wykład , M.A-B 17 / 34
18 Schemat ekstremów = schemat monotoniczności (różne wnioski) 1) obliczyć f (x) 2) wyznaczyć miejsca zerowe pochodnej, czyli f (x) = 0 3) zbadać znak f (kiedy f (x) > 0, < 0) albo sporzadzić wykres f i odczytać z wykresu 4) Wnioski (sprawdzić, czy w otoczeniu punktów podejrzanych następuje zmiana znaku f ) Zadanie Korzystajac z I warunku dostatecznego istnienia ekstremum znaleźć ekstrema lokalne funkcji: a) f (x) = x 3 3x b) f (x) = ln x x c) f (x) = (x 5)e x Informatyka Stosowana Wykład , M.A-B 18 / 34
19 Rozwiazanie a) f (x) = x 3 3x 2 + 4, D f = R, f (x) = 3x 2 6x, D f = R f (x) = 0 x = 0 x = 2 Metoda 1 Z wykresu f (x) = 3x 2 6x odczytujemy, że w punktach x = 0 oraz x = 2 następuje zmiana znaku. W x = 0 zmiana z "+" na " ", zatem f ma w x = 0 maksimum lokalne. W x = 2 zmiana z " " na "+", zatem f ma w x = 2 minimum lokalne. Odp. f max (0) = 4, f min (2) = 0. Informatyka Stosowana Wykład , M.A-B 19 / 34
20 Rozwiazanie b) f (x) = ln x x, D f = (0, ), f (x) = 1 ln x x 2, D f = (0, ) f (x) = 0 ln x = 1 x = e Metoda 1 Badamy znak f (x). Zauważmy, że znak f zależy tylko od 1 ln x, bo mianownik jest zawsze dodatni, więc na znak całości nie wpływa. Zatem f (x) > 0 1 ln x > 0 ln x < 1 x (0, e) f (x) < 0 1 ln x < 0 ln x > 1 x (e, ). Dla x = e następuje zmiana znaku z "+" na " ", zatem f ma w x = e maksimum lokalne. Odp. f max (e) = e 1. Informatyka Stosowana Wykład , M.A-B 20 / 34
21 Rozwiazanie c) f (x) = (x 5) e x, D f = R, f (x) = ( x + 6)e x, D f = R f (x) = 0 x = 6 (bo e x > 0 dla x R) Metoda 1 Badamy znak f. Ponieważ e x > 0 dla x R, więc nie wpływa na znak f. Zatem f (x) > 0 x + 6 > 0 x < 6. f (x) < 0 x + 6 < 0 x > 6. Stad w x = 6 zmiana z "+" na " ", zatem f ma w x = 6 maksimum lokalne. Odp. f max (6) = e 6. Informatyka Stosowana Wykład , M.A-B 21 / 34
22 Zadanie Korzystajac z I warunku dostatecznego istnienia ekstremum znaleźć ekstrema lokalne funkcji: Zauważmy, że D f = R oraz f (x) = 3 (x 2 2x) 2 = (x 2 2x) 2 3. f (x) = 4 3 x 1 3 x 2 2x = 4 3 x 1 3 x 3 x 2, D f = R\{0, 2} f (x) = 0 x = 1. Stad mamy punkty podejrzane: x = 1 x = 0 x = 2. (bo w 0 i 2 pochodna nie istnieje) Informatyka Stosowana Wykład , M.A-B 22 / 34
23 Badamy znak f. Zauważmy, że x 1 > 0 x > 1 3 x > 0 x > 0 Stad ( na podstawie pomocniczej tabeli): 3 x 2 > 0 x 2 > 0 x > 2 f (x) > 0 x (0, 1) (2, ) f (x) < 0 x (, 0) (1, 2) W x = 0 zmiana z " " na "+", zatem f ma w x = 0 minimum lokalne. (tzw. minimum ostrzowe) W x = 1 zmiana z "+" na " ", zatem f ma w x = 1 maksimum lokalne. W x = 2 zmiana z " " na "+", zatem f ma w x = 2 minimum lokalne. (tzw. minimum ostrzowe ) Odp. f min (0) = 0, f max (1) = 1, f min (2) = 0. Informatyka Stosowana Wykład , M.A-B 23 / 34
24 Alternatywna metoda badania ekstremów funkcji (nie będzie omawiana na wykładzie, ale można ja stosować na egzaminie) wykorzystuje druga pochodna funkcji. Twierdzenie - II warunek dostateczny Jeżeli f (x 0 ) = 0 oraz f (x) istnieje w otoczeniu punktu x 0, to a) f (x 0 ) > 0, to f ma w x 0 minimum lokalne b) f (x 0 ) < 0, to f ma w x 0 maksimum lokalne c) f (x 0 ) = 0, to nie można nic stwierdzić. Zadanie Korzystajac z II warunku dostatecznego istnienia ekstremum znaleźć ekstrema lokalne funkcji: a) f (x) = x 3 3x b) f (x) = ln x x c) f (x) = (x 5)e x Informatyka Stosowana Wykład , M.A-B 24 / 34
25 Rozwiazanie a) f (x) = x 3 3x 2 + 4, D f = R, f (x) = 3x 2 6x, D f = R f (x) = 0 x = 0 x = 2 Metoda 2 f (x) = (f (x)) = (3x 2 6x) = 6x 6, D f = R. Wyliczamy teraz wartość f w punktach podejrzanych x = 0 oraz x = 2 : f (0) = 6 < 0, zatem f ma w x = 0 maksimum lokalne. f (2) = 6 > 0, zatem f ma w x = 2 minimum lokalne. Odp. f max (0) = 4, f min (2) = 0. Informatyka Stosowana Wykład , M.A-B 25 / 34
26 Rozwiazanie b) f (x) = ln x x, D f = (0, ), f (x) = 0 ln x = 1 x = e f (x) = 1 ln x x 2, D f = (0, ) Metoda 2 f (x) = (f (x)) = ( 1 ln x ) = 2 ln x 3, D x 2 x 3 f = (0, ). Wyliczamy teraz wartość f w punkcie podejrzanym x = e : f (e) = 1 e 3 < 0, zatem f ma w x = e maksimum lokalne. Odp. f max (e) = e 1 Informatyka Stosowana Wykład , M.A-B 26 / 34
27 Rozwiazanie c) f (x) = (x 5) e x, D f = R, f (x) = ( x + 6)e x, D f = R f (x) = 0 x = 6 (bo e x > 0 dla x R) Metoda 2 f (x) = (f (x)) = (x 7)e x, D f = R. Wyliczamy teraz wartość f w punkcie podejrzanym x = 6 : f (6) = e 6 < 0, zatem f ma w x = 6 maksimum lokalne. Odp. f max (6) = e 6 Informatyka Stosowana Wykład , M.A-B 27 / 34
28 Wypukłość i wklęsłość funkcji Informatyka Stosowana Wykład , M.A-B 28 / 34
29 Mówimy, że f (x) jest wypukła w punkcie x = x 0, jeżeli dla pewnego sasiedztwa punktu x 0 wykres tej funkcji leży całkowicie nad styczna w punkcie (x 0, f (x 0 )). Mówimy, że f (x) jest wklęsła w punkcie x = x 0, jeżeli dla pewnego sasiedztwa punktu x 0 wykres tej funkcji leży całkowicie pod styczna w punkcie (x 0, f (x 0 )). Informatyka Stosowana Wykład , M.A-B 29 / 34
30 Twierdzenie - warunek dostateczny Jeżeli f (x) > 0 dla każdego x (a, b), to f jest wypukła na (a, b). Jeżeli f (x) < 0 dla każdego x (a, b), to f jest wklęsła na (a, b). Punkty przegięcia Punktem przegięcia (p.p.) funkcji nazywamy taki punkt x 0, w którym zmienia się charakter funkcji z wypukłej na wklęsła, albo z wklęsłej na wypukła. Punkty przegięcia moga istnieć w punktach, w których f (x) = 0 albo takich, w których f nie istnieje. Informatyka Stosowana Wykład , M.A-B 30 / 34
31 Przykład Jeżeli f (x) = x 3, to f jest wypukła dla x > 0, f jest wklęsła dla x < 0, x = 0 jest punktem przegięcia Przykład Jeżeli f (x) = x 2, to f jest wypukła dla x R, punktów przegięcia nie ma Informatyka Stosowana Wykład , M.A-B 31 / 34
32 UWAGA f jest wypukła - jest "kawałkiem" paraboli skierowanej ramionami do góry (o a > 0); f jest wklęsła - jest "kawałkiem" paraboli skierowanej ramionami do dołu (o a < 0); Przykład Określić przedziały wypukłości i wklęsłości oraz punkty przegięcia funkcji: a) f (x) = x 4 b) f (x) = x 2 ln x. Informatyka Stosowana Wykład , M.A-B 31 / 34
33 Rozwiazanie a) f (x) = x 4, x R f (x) = 4x 3, f (x) = 12x 2 f (x) = 0 x = 0 Na podstawie wykresu f (x) = 12x 2 stwierdzamy, że f (x) 0 dla x R, zatem f jest wypukła dla x R i punktów przegięcia nie ma. Informatyka Stosowana Wykład , M.A-B 32 / 34
34 Rozwiazanie b) f (x) = x 2 ln x, x (0, ) f (x) = 2x ln x + x, f (x) = 2 ln x + 3 f (x) = 0 2 ln x + 3 = 0 ln x = 3 2 x = e 3 2. Zauważmy, że f (x) > 0 2 ln x + 3 > 0 ln x > 3 2 x > e 3 2 f (x) < 0 2 ln x + 3 < 0 ln x < < x < e 3 2 Zatem f jest wypukła dla x > e 3 2 oraz wklęsła dla 0 < x < e 3 2. Punkt x = e 3 2 jest punktem przegięcia. Informatyka Stosowana Wykład , M.A-B 33 / 34
35 Dziękuję za uwagę! Informatyka Stosowana Wykład , M.A-B 34 / 34
Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Wykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Pochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28
Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28
Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna
Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
Pochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
Analiza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI
Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na
Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na ograniczenie czasowe chciałam już dziś dać pewne wskazówki i porady,
Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Rachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.
Egzamin podstawowy (wersja przykładowa), 2014
Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie
Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.
Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Pochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y
Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
ZASTOSOWANIA POCHODNEJ FUNKCJI
Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,
Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie 1. Styczne do krzywej: (a) y = sin x x 0 = π/6 (b) y = x 3 2x 2 + x 1 x 0 = 1 Tą styczną to już gdzieś objaśniałem. Jest to prosta o równaniu
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Matematyka dla biologów Zajęcia nr 6.
Matematyka dla biologów Zajęcia nr 6. Dariusz Wrzosek 14 listopada 2018 Matematyka dla biologów Zajęcia 6. 14 listopada 2018 1 / 25 Pochodna funkcji przypomnienie Dzięki pochodnej można określić czy funkcja
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568
Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 5. Badanie w Krakowie) przebiegu
Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji
Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Rachunek różniczkowy funkcji jednej zmiennej
Rachunek różniczkow funkcji jednej zmiennej wkład z MATEMATYKI Budownictwo, studia niestacjonarne sem. I, rok ak. 2008/2009 Katedra Matematki Wdział Informatki Politechnika Białostocka 1 Iloraz różnicow
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy
WYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
Pochodną funkcji w punkcie nazywamy granicę ilorazu różnicowego w punkcie gdy przyrost argumentu dąży do zera: lim
Definicja pochodnej Niech będzie funkcją określoną w pewnym przedziale i niech będzie punktem wewnętrznym tego przedziału. Liczbę dowolną, ale taką, że nazywamy przyrostem argumentu, a różnicę nazywamy
MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe
MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
1 Pochodne wyższych rzędów
1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje
TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI
TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach
ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO KOGNITYWISTYKA UAM, 016 017 JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM pogon@amu.edu.pl Dzisiejszy wykład
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy
Egzamin z matematyki dla I roku Biochemii i Biotechnologii
Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,
Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Maciej Burnecki strona główna Spis treści I Zadania Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy 5 6 Całki
FUNKCJA I JEJ WŁASNOŚCI
FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach