Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
|
|
- Artur Mazurkiewicz
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y Funkcję taką oznaczamy przez : X Y Wartość unkcji w punkcie oznaczamy przez () Deinicja (dziedzina, przeciwdziedzina, zbiór wartości) Niech : X Y Wtedy zbiór X nazywamy dziedziną unkcji i oznaczamy przez D, a zbiór Y nazywamy jej przeciwdziedziną Ponad to zbiór { ( ) Y : D } nazywamy zbiorem wartości unkcji Jeżeli dany jest tylko wzór określający unkcję, to zbiór tych elementów z, dla których wzór ten ma sens nazywamy dziedziną naturalną unkcji Określić dziedziny naturalne podanych unkcji a) ( ) log( 1); b) ( ) 1 4 sin Deinicja (wykres unkcji) Wykresem unkcji : X Y nazywamy zbiór nazywamy dziedziną unkcji i oznaczamy przez {(, y) : X, y ( )} Wtedy zbiór X D, a zbiór Y Wykres unkcji Nie jest to wykres unkcji 1
2 Deinicja (unkcja na ) Funkcja odwzorowuje zbiór X na zbiór Y, co notujemy : X Y, wtedy i tylko wtedy gdy na y Y X : ( ) y Geometrycznie unkcja : X Y jest na, gdy rzut prostokątny jej wykresu na oś OY pokrywa się ze zbiorem Y Deinicja (unkcja okresowa) Funkcja : X jest okresowa, jeżeli T X T X T oraz ( ) ( ) Liczbę T nazywamy okresem unkcji Najmniejszy okres unkcji nazywamy okresem podstawowym Deinicja (unkcja parzysta) y Y X : ( ) y Funkcja : X jest parzysta, jeżeli, X ( ) ( ) Funkcja jest parzysta, gdy oś OY jest osią symetrii jej wykresu Deinicja (unkcja nieparzysta) Funkcja : X jest nieparzysta, jeżeli, X ( ) ( ) Funkcja jest nieparzysta, gdy początek układu współrzędnych jest środkiem symetrii jej wykresu Deinicja (unkcja rosnąca) Funkcja jest rosnąca na zbiorze A D, jeżeli, A ( ) ( ( ) ( )) Deinicja (unkcja malejąca) Funkcja jest malejąca na zbiorze A D, jeżeli, A ( ) ( ( ) ( )) Deinicja (unkcja nierosnąca i niemalejąca)
3 Funkcja jest na zbiorze A D 1) niemalejąca, jeżeli 1 A 1 1 ) nierosnąca, jeżeli, A ( ) ( ( ) ( )), ( ) ( ( ) ( )) ; Deinicja (unkcja monotoniczna) Funkcja jest monotoniczna na zbiorze, jeżeli jest rosnąca, malejąca, nierosnąca lub niemalejąca na tym zbiorze Deinicja (unkcja złożona) Niech zbiory X, Y, Z, W będą niepuste, przy czym Y Z oraz niech : X Y, g : Z W Złożeniem unkcji g i nazywamy unkcję g : X W określoną wzorem Uwaga ( g )( ) g( ( )), dla X Składanie unkcji nie jest przemienne Określić unkcje złożone, g, g, g g, ( ), g( ) cos 3
4 Deinicja (unkcja różnowartościowa) Funkcja jest różnowartościowa, gdy każda prosta pozioma przecina jej wykres w co najwyżej w jednym punkcie Deinicja (unkcja odwrotna) na Niech unkcja : X Y będzie różnowartościowa na dziedzinie Funkcją odwrotną do unkcji nazywamy unkcję Uwaga 1 : Y X określoną przez warunek 1 ( y) y ( ), gdzie X, y Y Wykres unkcji odwrotnej prostej y= 1 otrzymujemy z wykresu unkcji odbijając go symetrycznie względem Funkcje elementarne e e Funkcje hiperboliczne: 1) sinus hiperboliczny sh, gdzie, e e ) cosinus hiperboliczny ch, gdzie, sh 3) tangens hiperboliczny th, gdzie, ch ch 4) kotangens hiperboliczny cth, gdzie sh 4
5 Fakt (podstawowe tożsamości z unkcji hiperbolicznymi) 1 ch sh 1, dla każdego ; sh sh ch, dla każdego ; 3 ch sh ch, dla każdego ; Deinicja (sąsiedztwa punktu) 1) Sąsiedztwo o promieniu r> punktu S(, r) ( r, ) (, r) ) Sąsiedztwo lewostronne S(, r) ( r, ) 3) Sąsiedztwo prawostronne S(, r) (, r) Deinicja (Heinego granicy właściwej w punkcie) Niech oraz niech unkcja będzie określona przynajmniej na sąsiedztwie S ( ) Liczba g jest granicą właściwą unkcji w punkcie, co zapisujemy ( ) g, wtedy i tylko wtedy, gdy ( n){ n} S( ) ( ( n) ) ( ( n) g) n n Obrazowo: unkcja ma w punkcie granicę właściwą g, gdy jej wartości odpowiadające argumentom dążącym do dążą do liczby g Deinicja (Heinego granicy niewłaściwej w punkcie) Niech oraz niech unkcja będzie określona przynajmniej na sąsiedztwie S ( ) Funkcja ma granicę niewłaściwą w punkcie, co zapisujemy Twierdzenie (o arytmetyce granic unkcji) ( ), wtedy i tylko wtedy, gdy ( n){ n} S( ) ( ( n) ) ( ( n) ) n n 5
6 Jeżeli unkcje i g mają granice właściwe w punkcje, to 1) ( ( ) g( )) ( ) g( ); ) ( ( ) g( )) ( ) g( ); 3) c ( ) c ( ); gdzie c ; 4) ( ( ) g( )) ( ) g( ) ; ( ) ( ) 5) ( ), o ile g( ) g( ) Uwaga Podobnie jak dla ciągów, symbole g ( ) ; 6) g( ) g( ) ( ( )) ( ) 1 nazywamy wyrażeniami nieoznaczonymi Ich wartości zależą od postaci unkcji je tworzących Obliczyć podane granice a) 5 1 ; 5 b) ; 1 c) ( 1 ); d) 1 ln Fakt (granice podstawowych wyrażeń nieoznaczonych) sin 1 tg 1 a 1 ln aa, 1 1 e 1 1 e ln(1 ) 1 arcsin 1 arctg 1 Obliczyć podane granice a) sin 7 ; sin5 b)
7 Deinicja (asymptota pionowa lewostronna) Prosta ASYMPTOTY FUNKCJI a jest asymptotą pionową lewostronną unkcji jeżeli: ( ) albo ( ) a a Podobnie deiniuje się asymptotę pionową prawostronną Deinicja (asymptota pionowa obustronna) Prosta jest asymptotą pionową obustronna, gdy jest jednocześnie asymptotą pionową lewostronną i prawostronną Fakt (o lokalizacji asymptot pionowych unkcji) Funkcja może mieć asymptoty pionowe jedynie w skończonych krańcach dziedziny, które do niej nie należą (w punktach nie należących do dziedziny poza i ) Wyznaczyć asymptoty pionowe podanych unkcji a) 1 ( ) e ; b) ( )
8 Deinicja (asymptota ukośna unkcji) Prosta y A B jest asymptotą ukośną unkcji w wtedy i tylko wtedy, gdy jeżeli: ( A ) oraz B= ( ) A Fakt (warunek istnienia asymptot poziomych) Prosta y B jest asymptotą poziomą unkcji w B= ( ) Uwaga Analogicznie wyglądają warunki istnienia asymptot w Uwaga Jeżeli unkcja posiada asymptotę poziomą, to nie posiada ukośnych Znaleźć asymptoty poziome i ukośne unkcji a) ( ) ; b) 1 Deinicja (unkcja ciągła w punkcie) ( ) Niech oraz niech unkcja będzie określona przynajmniej na otoczeniu O ( ) Funkcja jest ciągła w punkcie wtedy i tylko wtedy, gdy ( ) ( ) ( ) 8
9 Funkcja ciągła w punkcie Funkcja nieciągła w punkcie Obrazowo: unkcja jest ciągłą w punkcie, gdy jej wykres nie przerywa się w tym punkcie Zbadać ciągłość unkcji 1 dla 1 ( ) 1 dla 1 Dobrać parametry ab, tak, aby unkcja Deinicja (unkcja ciągła na zbiorze) sin dla 1 ( ) a +b dla 1 była ciągła Funkcja jest ciągła na zbiorze, gdy jest ciągła w każdym punkcie tego zbioru 9
10 Nieciągłość unkcji Nieciągłość typu skok ( ) ( ) Nieciągłość typu luka ( ) ( ) ( ) Twierdzenie (o ciągłości sumy, różnicy, iloczynu i ilorazu unkcji) Jeżeli unkcje i g mają granice właściwe w punkcje, to Jeżeli unkcje i g są ciągłe w punkcie, to unkcje g, g, g, (o ile g ( ) ) są ciągłe w g punkcie 1
Ekoenergetyka Matematyka 1. Wykład 7. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Ekoenergetyka Matematyka 1. Wykład 7. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY będą niepuste. Funkcją określoną na zbiorze X o wartościach w zbiorze Y nazywamy przyporządkowanie
Bardziej szczegółowo1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Bardziej szczegółowo6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Bardziej szczegółowoGranice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
Bardziej szczegółowoWYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość
Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;
Bardziej szczegółowoII. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.
II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie
Bardziej szczegółowoFUNKCJA I JEJ WŁASNOŚCI
FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie
Bardziej szczegółowoGranica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
Bardziej szczegółowoFUNKCJE. 1. Podstawowe definicje
FUNKCJE. Podstawowe definicje DEFINICJA. Funkcja f odwzorowującą zbiór X w zbiór Y (inaczej f : X Y ) nazywamy takie przyporządkowanie, które każdemu elementowi x X przyporządkowuje dokładnie jeden element
Bardziej szczegółowoIII. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Bardziej szczegółowo1 Wyrażenia potęgowe i logarytmiczne.
Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n
Bardziej szczegółowoGranice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
Bardziej szczegółowo3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Bardziej szczegółowoFUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Bardziej szczegółowoMatematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje
Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoFunkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Bardziej szczegółowoRACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Bardziej szczegółowoPochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Bardziej szczegółowoAnaliza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
Bardziej szczegółowoFunkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Bardziej szczegółowoO funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.
1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej
Bardziej szczegółowo7. Funkcje elementarne i ich własności.
Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne
Bardziej szczegółowoMatematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2
Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu
Bardziej szczegółowoPochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
Bardziej szczegółowoCiągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na
Bardziej szczegółowoTreści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoZbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16
Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest
Bardziej szczegółowoPochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Bardziej szczegółowoRachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Bardziej szczegółowoCiągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Bardziej szczegółowoAnaliza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Bardziej szczegółowoGranica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel rok akademicki 03/04, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t:
Bardziej szczegółowoTreści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoWykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoRozdział 2. Funkcje jednej zmiennej rzeczywistej
Rozdział. Funkcje jednej zmiennej rzeczywistej. Rodzaje funkcji elementarnych Kiedy mamy do czynienia z pojęciem funkcji? Każdy używany samochód ma swój nr rejestracyjny. Oczywiście niektóre tablice rejestracyjne
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoTreści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Bardziej szczegółowoCiągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji
Bardziej szczegółowoRachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
Bardziej szczegółowoRozdział 3. Granica i ciągłość funkcji jednej zmiennej
Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności
Bardziej szczegółowoGranica funkcji wykład 5
Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g
Bardziej szczegółowoWykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Bardziej szczegółowoGranica funkcji. 27 grudnia Granica funkcji
27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy
Bardziej szczegółowoEkstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
Bardziej szczegółowoAnaliza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
Bardziej szczegółowoGranica funkcji. 8 listopada Wykład 4
Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy
Bardziej szczegółowoAsymptoty funkcji. Pochodna. Zastosowania pochodnej
Temat wykładu: Asymptoty unkcji. Pochodna. Zastosowania pochodnej Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Asymptoty unkcji Zagadnienia 2. Pochodna
Bardziej szczegółowoFunkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Bardziej szczegółowoPochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Bardziej szczegółowoFunkcja f jest ograniczona, jeśli jest ona ograniczona z
FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden
Bardziej szczegółowoWykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Bardziej szczegółowoLiteratura podstawowa
1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.
Bardziej szczegółowoRoksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
Bardziej szczegółowo1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
Bardziej szczegółowoWykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
Bardziej szczegółowoZbiory liczbowe i funkcje wykład 1
Zbiory liczbowe i funkcje wykład 1 dr Mariusz Grządziel 6 października 2008 1 Matematyka w naukach przyrodniczych Zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w
Bardziej szczegółowoFunkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Bardziej szczegółowoGranica funkcji. 16 grudnia Wykład 5
Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym
Bardziej szczegółowoProjekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Bardziej szczegółowoSIMR 2013/14, Analiza 1, wykład 5, Pochodna funkcji
SIMR 03/4, Analiza, wykład 5, 0--6 Pocodna funkcji Definicja: Niec będzie dana funkcja f : D R oraz punkt intd. Wtedy pocodną funkcji f w punkcie nazywamy granicę (o ile istnieje i jest skończona): f f(
Bardziej szczegółowoPochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowo2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub
WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy
Bardziej szczegółowoSYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia
SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów
Bardziej szczegółowoFUNKCJE. Rozwiązywanie zadań Ćw. 1-3 a) b) str Ćw. 5 i 6 str. 141 dodatkowo podaj przeciwdziedzinę.
FUNKCJE Lekcja 61-6. Dziedzina i miejsce zerowe funkcji str. 140-14 Co to jest funkcja. Może przykłady. W matematyce funkcje najczęściej przedstawiamy za pomocą wzorów. Przykłady. Dziedzina to zbiór argumentów
Bardziej szczegółowo< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:
Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że
Bardziej szczegółowo11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Bardziej szczegółowoLista zagadnień omawianych na wykładzie w dn r. :
Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu
Bardziej szczegółowoFunkcje i ich własności. Energetyka, sem.1 (2017/2018) Matematyka #3: Funkcje 1 / 43
Funkcje i ich własności Energetyka, sem.1 (2017/2018) Matematyka #3: Funkcje 1 / 43 Zbiory liczbowe Zbiory Zbiór Iloczyn (część wspólna zbiorów) A B = {x : x A x B} Suma Różnica Zawieranie się A B = {x
Bardziej szczegółowo9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
Bardziej szczegółowoMatematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Bardziej szczegółowoCi agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji
2 grudnia 2014 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2
Bardziej szczegółowoFunkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej
Bardziej szczegółowoJolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Bardziej szczegółowoFunkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska
Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.
Bardziej szczegółowoPoziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
Bardziej szczegółowoFunkcje jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Funkcje jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 09 Spis treści Pojęcie funkcji. Dziedzina i przeciwdziedzina Wykres funkcji Przekształcanie wykresów funkcji Sposoby zadawania
Bardziej szczegółowoRACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ
EAIiIB-Inormatyka -Wykład 4- dr Adam Ćmiel cmiel@agedupl RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Niec : R D R Niec D będzie punktem skupienia zboru D Oznaczenia: Ot,δ) K,δ) -δ, +δ) D ; S,δ) Ot,δ)-{
Bardziej szczegółowoWYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
Bardziej szczegółowoWykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoPLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
Bardziej szczegółowoZajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Bardziej szczegółowoSpis treści. 1 Macierze Macierze. Działania na macierzach Wyznacznik Macierz odwrotna Rząd macierzy...
Spis treści 1 Macierze 3 1.1 Macierze. Działania na macierzach.............................. 3 1.2 Wyznacznik.......................................... 6 1.3 Macierz odwrotna......................................
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoI. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Bardziej szczegółowoKatalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Bardziej szczegółowoVIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Bardziej szczegółowoFunkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14
XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny
Bardziej szczegółowoProgram nauczania z matematyki rozszerzony i poradnik dla nauczyciela klasa III szkoły ponadgimnazjalnej
Program nauczania z matematyki rozszerzony i poradnik dla nauczyciela klasa III szkoły ponadgimnazjalnej Spis treści Wstęp.4 Program nauczania z matematyki rozszerzony....5 Poradnik dla nauczyciela 7 Wstęp
Bardziej szczegółowo1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
Bardziej szczegółowo