Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
|
|
- Maria Emilia Sosnowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
2 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje na (a,b) to istnieje punkt c (a, b) taki, że f (c) = f (b) f (a). b a Innymi słowy, dla funkcji spełniajacej warunki 1 2 istnieje w przedziale (a, b) punkt c, w którym styczna do wykresu jest równoległa do siecznej łacz acej jego końce. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
3 Zadanie Zastosować twierdzenie Lagrange a do funkcji f (x) = arc tg x na przedziale [ 1, 3]. Wyznaczyć odpowiednie punkty. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
4 Zadanie Zbadać, czy istnieja pochodne podanych funkcji: { x 1, x 1 a) f (x) = 1 2 x(x 1), x < 1., x 0 = 1 b) f (x) = x 3 + x, x 0 = 0 Zadanie Dobrać parametry a, b i c tak, aby funkcja f miała pochodna na R. 1, x < 0 f (x) = a sin x + b cos x + c, 0 x π 1, x > π. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
5 Reguła de L Hospitala Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
6 Regułę de L Hospitala stosujemy do liczenia pewnych granic typu lim x x 0 f (x) g(x) albo f (x) lim x ± g(x) Zakładamy, że f i g sa funkcjami różniczkowalnymi. Przez A oznaczamy tu liczbę albo ±. Reguła de L Hospitala Jeżeli funkcje f i g spełniaja warunki { { lim f (x) = 0 lim f (x) = ± 1 x A lim g(x) = 0 albo x A lim g(x) = ± x A x A 2 lim x A f (x) g (x) = k, to f (x) lim x A g(x) = k. Zauważmy, że k może przyjmować również wartości ±. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
7 Krócej można to zapisać: f (x) lim x A g(x) = co rozumiemy następujaco: [ ] 0 0 albo H f (x) = lim x A g (x), " jeśli istnieje granica lim wynosi k." f (x) x A g (x) f (x) i wynosi k, to granica lim x A g(x) również Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
8 Przykład a) lim x 0 x cos x x 5 3x 3 +2x (3x 1) ln x b) lim x 1 x 4 3x 2 +2 sin 5x sin 2x c) lim x 0 cos 4x+2x 1 d) ln sin x lim x 0 + ln tg x e) lim x 0 + f) lim x 1 + x ln(x 1) Wskazówka W przykładzie e) skorzystać z przedstawienia f g = [0 ] = f 1 g albo = g 1 f Wskazówka W przykładzie f ) skorzystać z tego, że dla wyrażeń f g przedstawiajacych symbole 1, 0, 0 0 mamy przedstawienie: f g = e g ln f. Dodatkowo z granica możemy przejść wtedy do wykładnika funkcji wykładniczej. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
9 Rozwiazanie przykładu e): ln x lim x ln x = [0 ( )] = lim x 0 + x x = [ ] H (ln x) = lim x 0 + ( 1 = x ) = lim x x 1 x 2 = lim x 0 +( x) = 0. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
10 Rozwiazanie przykładu f ): bo lim x ln(x 1) = [1 ] = lim eln(x 1) ln x = e lim [ln(x 1) ln x] x 1 + x 1 + x 1 + = e ( ) = e 0 = 1, ln(x 1) ( ) = lim x 1 +[ln(x 1) ln x] = [( ) 0] = lim x H (ln(x 1)) = lim x 1 + ( 1 ln x ) 1 x 1 = lim x ln 2 x x H (x(ln x) 2 ) (ln x) ln x = lim x 1 + ( x + 1) = lim x ln x = lim x 1 + x(ln x) 2 x + 1 = = = = 0. [ ] 0 0 [ ] 0 0 Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
11 Monotoniczność funkcji Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
12 Twierdzenie o monotoniczności funkcji Jeżeli dla każdego x z pewnego przedziału A funkcja f spełnia warunek: f (x) = 0, to f jest stała dla x A f (x) > 0, to f jest rosnaca dla x A f (x) 0, to f jest niemalejaca dla x A f (x) < 0, to f jest malejaca dla x A; f (x) 0, to f jest nierosnaca dla x A. Uwaga Jeżeli f (x) 0 dla każdego x A, przy czym równość f (x) = 0 zachodzi tylko dla skończonej liczby punktów tego przedziału, to funkcja f jest rosnaca dla x A. Analogicznie dla funkcji malejacej. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
13 Przykład Znaleźć przedziały monotoniczności funkcji a) f (x) = x 1+x 2 b) f (x) = (x + 1)e x c) f (x) = ln 3 x 3 ln x Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
14 Asymptoty Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
15 Asymptota funkcji - prosta, do której zbliża się wykres danej funkcji, ale nigdy go nie przetnie. pionowa x = x 0 pozioma y = y 0 ukośna y = ax + b Przykład y = e x ma asymptotę pozioma y = 0 lewostronna (czyli w ) y = ln x ma asymptotę pionowa prawostronna x = 0 Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
16 Asymptota pionowa jeśli lim x x 0 x = x 0, f (x) = ± albo lim x x + 0 f (x) = ± Asymptota pionowa może istnieć w punktach x 0, które do dziedziny nie należa, ale ich otoczenia należa do dziedziny, czyli np. gdy D = (, x 0 ), D = (x 0, ) Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
17 Przykład Funkcja y = ln x ma asymptotę pionowa prawostronna x = 0. Funkcja y = 1 x ma asymptotę pionow a x = 0 (obustronna). Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
18 Asymptota pozioma lewostronna y = A, gdy lim f (x) = A. x Asymptota pozioma prawostronna y = B, gdy lim f (x) = B x Asymptota pozioma w albo w może istnieć, o ile albo odpowiednio należy do dziedziny funkcji. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
19 Przykład Funkcja y = e x ma asymptotę pozioma lewostronna y = 0. Funkcja y = 1 x ma asymptotę poziom a y = 0 (obustronna). Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
20 Asymptota ukośna y = Ax + B Jeżeli f (x) A = lim ±, x ± x to B = lim (f (x) Ax). x ± Gdy A = 0, to asymptota ukośna=asymptota pozioma. Uwaga. W i moga być inne wzory asymptot ukośnych. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
21 Przykłady Zbadać istnienie asymptot funkcji: a) f (x) = x 2 1, b) f (x) = x x 2 4 Odpowiedzi a) as. pionowych brak, as. ukośna prawostronna y = x (w ) oraz as. ukośna lewostronna y = x (w ); b) as. pionowa x = 2 (obustronna), as. ukośna y = x (obustronna) Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
22 Ekstrema funkcji Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
23 Definicja Funkcja f ma w x 0 R minimum lokalne (właściwe), jeśli δ>0 x (x0 δ,x 0 +δ) f (x) > f (x 0 ). Funkcja f ma w x 0 R maksimum lokalne (właściwe), jeśli δ>0 x (x0 δ,x 0 +δ) f (x) < f (x 0 ). Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
24 Twierdzenie Fermata Jeżeli funkcja f ma ekstremum lokalne w punkcie x 0 oraz f (x 0 ) istnieje, to f (x 0 ) = 0. Zauważmy, że implikacja odwrotna jest fałszywa. Wystarczy rozważyć funkcję f (x) = x 3. f (x) = (x 3 ) = 3x 2, dla x 0 = 0 zachodzi f (0) = 0, ale ekstremum lokalnego w zerze nie ma (patrz wykres). Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
25 Jeżeli funkcja ma ekstremum lokalne w punkcie oraz jeżeli w tym punkcie wykres funkcji ma styczna, to ta styczna jest pozioma. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
26 Fakt - o lokalizacji ekstremów funkcji (tzw. punkty podejrzane) Funkcja może mieć ekstrema lokalne tylko w punktach, w których pochodna równa się zero albo w punktach, w których jej pochodna nie istnieje. Twierdzenie - I warunek dostateczny Jeżeli f (x 0 ) = 0 oraz f (x) zmienia w x 0 znak, to f ma w x 0 ekstremum lokalne. Jeżeli zmiana: + - maksimum lokalne w x minimum lokalne w x 0 Twierdzenie - II warunek dostateczny Jeżeli f (x 0 ) = 0 oraz f (x) istnieje w otoczeniu punktu x 0, to a) f (x 0 ) > 0, to f ma w x 0 minimum lokalne b) f (x 0 ) < 0, to f ma w x 0 maksimum lokalne c) f (x 0 ) = 0, to nie można nic stwierdzić. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
27 Zadanie Korzystajac z I i II warunku dostatecznego istnienia ekstremum znaleźć ekstrema lokalne funkcji: a) f (x) = x 3 3x b) f (x) = ln x x c) f (x) = (x 5)e x Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
28 Rozwiazanie a) f (x) = x 3 3x 2 + 4, D f = R, f (x) = 3x 2 6x, D f = R f (x) = 0 x = 0 x = 2 Metoda 1 Na podstawie wykresu f (x) = 3x 2 6x mamy, że w punktach x = 0 oraz x = 2 następuje zmiana znaku. W x = 0 zmiana z "+" na " ", zatem f ma w x = 0 maksimum lokalne. W x = 2 zmiana z " " na "+", zatem f ma w x = 2 minimum lokalne. Odp. f max (0) = 4, f min (2) = 0. Metoda 2 Wyliczamy f (x) = (f (x)) = (3x 2 6x) = 6x 6, D f = R. Wyliczamy teraz wartość f w punktach podejrzanych x = 0 oraz x = 2. f (0) = 6 < 0, zatem f ma w x = 0 maksimum lokalne. f (2) = 6 > 0, zatem f ma w x = 2 minimum lokalne. Odp. f max (0) = 4, f min (2) = 0. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
29 Rozwiazanie b) f (x) = ln x x, D f = (0, ), f (x) = 1 ln x x 2, D f = (0, ) f (x) = 0 ln x = 1 x = e Metoda 1 Badamy znak f (x). Zauważmy, że znak f zależy tylko od 1 ln x, bo mianownik jest zawsze dodatni, więc na znak całości nie wpływa. Zatem f (x) > 0 1 ln x > 0 x (0, e) f (x) < 0 1 ln x < 0 x (e, ). Dla x = e następuje zmiana znaku z "+" na " ", zatem f ma w x = e maksimum lokalne. Odp. f max (e) = e 1. Metoda 2 Wyliczamy f (x) = (f (x)) = ( 1 ln x ) 2 ln x 3 =, D x 2 x 3 f = (0, ). Wyliczamy teraz wartość f w punkcie podejrzanym x = e. f (e) = 1 < 0, zatem f ma w x = e maksimum lokalne. e 3 Odp. f max (e) = e 1 Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
30 Rozwiazanie c) f (x) = (x 5) e x, D f = R, f (x) = ( x + 6)e x, D f = R f (x) = 0 x = 6 (bo e x > 0 dla x R) Metoda 1 Badamy znak f. Ponieważ e x > 0 dla x R, więc nie wpływa na znak f. Zatem f (x) > 0 x + 6 > 0 x < 6. f (x) < 0 x + 6 < 0 x > 6. Stad w x = 6 zmiana z "+" na " ", zatem f ma w x = 6 maksimum lokalne. Odp. f max (6) = e 6. Metoda 2 Wyliczamy f (x) = (f (x)) = (x 7)e x, D f = R. Wyliczamy teraz wartość f w punkcie podejrzanym x = 6. f (6) = e 6 < 0, zatem f ma w x = 6 maksimum lokalne. Odp. f max (6) = e 6 Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
31 Zadanie Korzystajac z I warunku dostatecznego istnienia ekstremum znaleźć ekstrema lokalne funkcji: Zauważmy, że D f = R oraz f (x) = 3 (x 2 2x) 2 = (x 2 2x) 2 3 f (x) = 4 3 x 1 3 x 2 2x = 4 3 x 1 3 x 3 x 2, D f = R\{0, 2} f (x) = 0 x = 1. Stad mamy punkty podejrzane: x = 1 x = 0 x = 2. (bo w 0 i 2 pochodna nie istnieje) Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
32 Badamy znak f. Zauważmy, że x 1 > 0 x > 1 Stad 3 x > 0 x > 0 3 x 2 > 0 x 2 > 0 x > 2 f (x) > 0 x (0, 1) (2, ) f (x) < 0 x (, 0) (1, 2) W x = 0 zmiana z " " na "+", zatem f ma w x = 0 minimum lokalne. (tzw. minimum ostrzowe) W x = 1 zmiana z "+" na " ", zatem f ma w x = 1 maksimum lokalne. W x = 2 zmiana z " " na "+", zatem f ma w x = 2 minimum lokalne. (tzw. minimum ostrzowe ) Odp. f min (0) = 0, f max (1) = 1, f min (2) = 0. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
33 Wypukłość i wklęsłość funkcji Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
34 Mówimy, że f (x) jest wypukła w punkcie x = x 0, jeżeli dla pewnego sasiedztwa punktu x 0 wykres tej funkcji leży całkowicie nad styczna w punkcie (x 0, f (x 0 )). Mówimy, że f (x) jest wklęsła w punkcie x = x 0, jeżeli dla pewnego sasiedztwa punktu x 0 wykres tej funkcji leży całkowicie pod styczna w punkcie (x 0, f (x 0 )). Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
35 Twierdzenie - warunek dostateczny Jeżeli f (x) > 0 dla każdego x (a, b), to f jest wypukła na (a, b). Jeżeli f (x) < 0 dla każdego x (a, b), to f jest wklęsła na (a, b). Punkty przegięcia Punktem przegięcia (p.p.) funkcji nazywamy taki punkt x 0, w którym zmienia się charakter funkcji z wypukłej na wklęsła, albo z wklęsłej na wypukła. Punkty przegięcia moga istnieć w punktach, w których f (x) = 0 albo takich, w których f nie istnieje. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
36 Przykład Jeżeli f (x) = x 3, to f jest wypukła dla x > 0, f jest wklęsła dla x < 0, x = 0 jest punktem przegięcia Przykład Jeżeli f (x) = x 2, to f jest wypukła dla x R, punktów przegięcia nie ma Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
37 UWAGA f jest wypukła - jest "kawałkiem" paraboli skierowanej ramionami do góry (o a > 0); f jest wklęsła - jest "kawałkiem" paraboli skierowanej ramionami do dołu (o a < 0); Przykład Określić przedziały wypukłości i wklęsłości oraz punkty przegięcia funkcji: a) f (x) = x 4 b) f (x) = x 2 ln x. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
38 Rozwiazanie a) f (x) = x 4, x R f (x) = 4x 3, f (x) = 12x 2 f (x) = 0 x = 0 Na podstawie wykresu f (x) = 12x 2 stwierdzamy, że f (x) 0 dla x R, zatem f jest wypukła dla x R i punktów przegięcia nie ma. Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
39 Rozwiazanie b) f (x) = x 2 ln x, x (0, ) f (x) = 2x ln x + x, f (x) = 2 ln x + 3 Zauważmy, że f (x) = 0 2 ln x + 3 = 0 ln x = 3 2 x = e 3 2. f (x) > 0 2 ln x + 3 > 0 x > e 3 2 f (x) < 0 2 ln x + 3 < 0 0 < x < e 3 2 Zatem f jest wypukła dla x > e 3 2 x = e 3 2 jest punktem przegięcia. oraz wklęsła dla 0 < x < e 3 2. Punkt Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
40 Dziękuję za uwagę! Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Wykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
Pochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo
Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI
Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji
Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.
Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Pochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Rachunek różniczkowy funkcji f : R R
Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem
f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
Egzamin podstawowy (wersja przykładowa), 2014
Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28
Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem
Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale
1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej
. Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
ZASTOSOWANIA POCHODNEJ FUNKCJI
Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28
Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna
Analiza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
4b. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 4b. wbadanie Krakowie)
Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI WYKŁAD 10: WYBRANE TWIERDZENIA RACHUNKU RÓŻNICZKOWEGO KOGNITYWISTYKA UAM, 016 017 JERZY POGONOWSKI Zakład Logiki i Kognitywistyki UAM pogon@amu.edu.pl Dzisiejszy wykład
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Granica funkcji. 27 grudnia Granica funkcji
27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU
WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:
Granica funkcji. 16 grudnia Wykład 5
Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Granica funkcji. 8 listopada Wykład 4
Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy
Matematyka dla biologów Zajęcia nr 6.
Matematyka dla biologów Zajęcia nr 6. Dariusz Wrzosek 14 listopada 2018 Matematyka dla biologów Zajęcia 6. 14 listopada 2018 1 / 25 Pochodna funkcji przypomnienie Dzięki pochodnej można określić czy funkcja
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na
Otrzymali Państwo od Pani dr Cichockiej przykładowe zadania na egzamin. Na ostatnich zajęciach możemy je porozwiązywać, ale ze względu na ograniczenie czasowe chciałam już dziś dać pewne wskazówki i porady,
Tekst na niebiesko jest komentarzem lub treścią zadania b; stąd b = (6 π 3)/12. 3 Wzór stycznej: 2 x + 6 π
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie 1. Styczne do krzywej: (a) y = sin x x 0 = π/6 (b) y = x 3 2x 2 + x 1 x 0 = 1 Tą styczną to już gdzieś objaśniałem. Jest to prosta o równaniu
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Pochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y
Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie
Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.
Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Rachunek Różniczkowy
Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem
ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy
Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ
Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki Spis treści I Elementy logiki, zbiory, funkcje 3 Zadania................................ 3....................... 4 II Funkcje trygonometryczne
DEFINICJA. E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa
Pochodna funkcji jednej zmiennej rzeczywistej E-podręcznik pod redakcją: Vsevolod Vladimirov Autor: Tomasz Zabawa 2015 Spis treści Pochodna funkcji w punkcie. Pochodna jednostronna, niewłaściwa i funkcji
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)
Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych
Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Maciej Burnecki strona główna Spis treści I Zadania Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy 5 6 Całki
Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568
Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki. klasa II 2018/19. Adam Stachura
RACHUNEK RÓŻNICZKOWY- sprawdziany i kartkówki klasa II 08/9 Adam Stachura Sprawdzian. Granice funkcji- przykładowe zadania ) 8 ZADANIE. Obliczyć granicę. 4 +6 4 Rozwiazanie. Dziedzina funkcji, której granice
Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji
2 grudnia 2014 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2
EGZAMIN PISEMNY Z ANALIZY I R. R n
EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość
5. Badanie przebiegu zmienności funkcji - monotoniczność i wypukłość Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 5. Badanie w Krakowie) przebiegu
Ciągi. Granica ciągu i granica funkcji.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Ciągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Lista 0 wstęp do matematyki
dr Karol Selwat Matematyka dla studentów kierunku Ochrona Środowiska, 2-2 Lista wstęp do matematyki.. Sprawdź, czy następujące zdania logiczne są tautologiami: p q) p q) p q) p q) p q) q p) d)[p q) p]
Asymptoty funkcji. Pochodna. Zastosowania pochodnej
Temat wykładu: Asymptoty unkcji. Pochodna. Zastosowania pochodnej Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Asymptoty unkcji Zagadnienia 2. Pochodna
MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe
MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
Podstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy
Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne