Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji"

Transkrypt

1 2 grudnia 2014

2 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2 Dlaczego nie dobiegamy do półki skalnej? Ponieważ nie mamy pewności czy dalej będzie na czym stanać. Rozważmy funkcję, która w każdym punkcie przyporzadkowuje wysokość terenu. W pierwszym wypadku nie mamy nagłych zmian wartości funkcji, w drugim takie moga być.

3 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2 Dlaczego nie dobiegamy do półki skalnej? Ponieważ nie mamy pewności czy dalej będzie na czym stanać. Rozważmy funkcję, która w każdym punkcie przyporzadkowuje wysokość terenu. W pierwszym wypadku nie mamy nagłych zmian wartości funkcji, w drugim takie moga być.

4 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2 Dlaczego nie dobiegamy do półki skalnej? Ponieważ nie mamy pewności czy dalej będzie na czym stanać. Rozważmy funkcję, która w każdym punkcie przyporzadkowuje wysokość terenu. W pierwszym wypadku nie mamy nagłych zmian wartości funkcji, w drugim takie moga być.

5 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2 Dlaczego nie dobiegamy do półki skalnej? Ponieważ nie mamy pewności czy dalej będzie na czym stanać. Rozważmy funkcję, która w każdym punkcie przyporzadkowuje wysokość terenu. W pierwszym wypadku nie mamy nagłych zmian wartości funkcji, w drugim takie moga być.

6 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2 Dlaczego nie dobiegamy do półki skalnej? Ponieważ nie mamy pewności czy dalej będzie na czym stanać. Rozważmy funkcję, która w każdym punkcie przyporzadkowuje wysokość terenu. W pierwszym wypadku nie mamy nagłych zmian wartości funkcji, w drugim takie moga być.

7 Definicja ciagłości w punkcie. Definicja Funkcję f : D x f (x) R nazywamy ciagł a w punkcie x 0 D jeżeli ɛ>0 δ>0 : x D x x 0 < δ f (x) f (x 0 ) < ɛ.

8 Interpretacja pojęcia ciagłości. Niech dziedzina funkcji będzie droga po której poruszamy się samochodem, a wartościa wysokość powierzchni drogi. Funkcja ciagła to taka która nie ma nagłych zmian wartości. Jak interpretować nagła zmianę wartości. Podczas parkowania różnica wysokości około 12 cm (krawężnik) jest akceptowalna - nie traktujemy jej jako nagłej. Przy podróży po autostradzie uskok 12 cm nie jest akceptowalny. Czym zatem jest ɛ i δ?

9 Interpretacja pojęcia ciagłości. Niech dziedzina funkcji będzie droga po której poruszamy się samochodem, a wartościa wysokość powierzchni drogi. Funkcja ciagła to taka która nie ma nagłych zmian wartości. Jak interpretować nagła zmianę wartości. Podczas parkowania różnica wysokości około 12 cm (krawężnik) jest akceptowalna - nie traktujemy jej jako nagłej. Przy podróży po autostradzie uskok 12 cm nie jest akceptowalny. Czym zatem jest ɛ i δ?

10 Interpretacja pojęcia ciagłości. Niech dziedzina funkcji będzie droga po której poruszamy się samochodem, a wartościa wysokość powierzchni drogi. Funkcja ciagła to taka która nie ma nagłych zmian wartości. Jak interpretować nagła zmianę wartości. Podczas parkowania różnica wysokości około 12 cm (krawężnik) jest akceptowalna - nie traktujemy jej jako nagłej. Przy podróży po autostradzie uskok 12 cm nie jest akceptowalny. Czym zatem jest ɛ i δ?

11 Interpretacja pojęcia ciagłości. Niech dziedzina funkcji będzie droga po której poruszamy się samochodem, a wartościa wysokość powierzchni drogi. Funkcja ciagła to taka która nie ma nagłych zmian wartości. Jak interpretować nagła zmianę wartości. Podczas parkowania różnica wysokości około 12 cm (krawężnik) jest akceptowalna - nie traktujemy jej jako nagłej. Przy podróży po autostradzie uskok 12 cm nie jest akceptowalny. Czym zatem jest ɛ i δ?

12 Interpretacja pojęcia ciagłości. Niech dziedzina funkcji będzie droga po której poruszamy się samochodem, a wartościa wysokość powierzchni drogi. Funkcja ciagła to taka która nie ma nagłych zmian wartości. Jak interpretować nagła zmianę wartości. Podczas parkowania różnica wysokości około 12 cm (krawężnik) jest akceptowalna - nie traktujemy jej jako nagłej. Przy podróży po autostradzie uskok 12 cm nie jest akceptowalny. Czym zatem jest ɛ i δ?

13 Interpretacja pojęcia ciagłości. Niech dziedzina funkcji będzie droga po której poruszamy się samochodem, a wartościa wysokość powierzchni drogi. Funkcja ciagła to taka która nie ma nagłych zmian wartości. Jak interpretować nagła zmianę wartości. Podczas parkowania różnica wysokości około 12 cm (krawężnik) jest akceptowalna - nie traktujemy jej jako nagłej. Przy podróży po autostradzie uskok 12 cm nie jest akceptowalny. Czym zatem jest ɛ i δ?

14 Interpretacja pojęcia ciagłości - cd. Przyjmijmy ɛ = 15cm. 1 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na krawężnik podczas parkowania. Wówczas wiemy, że po pokonaniu dystansy 2cm - najeżdżamy na krawężnik, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 2. 2 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na próg spowalniajacy (zakładamy, że jest niższy niż 15 cm.) Wówczas wiemy, że po pokonaniu dystansu 20cm - połowa szerokości progu, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 20cm. 3 Rozważmy punkt dziedziny funkcji, jako punkt na autostradzie. Możemy założyć, że na przyrost wysokości około 15cm, potrzeba na pewno ponad 1m drogi.tym samym δ = 1m. a prawdopodobnie może być większa.

15 Interpretacja pojęcia ciagłości - cd. Przyjmijmy ɛ = 15cm. 1 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na krawężnik podczas parkowania. Wówczas wiemy, że po pokonaniu dystansy 2cm - najeżdżamy na krawężnik, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 2. 2 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na próg spowalniajacy (zakładamy, że jest niższy niż 15 cm.) Wówczas wiemy, że po pokonaniu dystansu 20cm - połowa szerokości progu, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 20cm. 3 Rozważmy punkt dziedziny funkcji, jako punkt na autostradzie. Możemy założyć, że na przyrost wysokości około 15cm, potrzeba na pewno ponad 1m drogi.tym samym δ = 1m. a prawdopodobnie może być większa.

16 Interpretacja pojęcia ciagłości - cd. Przyjmijmy ɛ = 15cm. 1 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na krawężnik podczas parkowania. Wówczas wiemy, że po pokonaniu dystansy 2cm - najeżdżamy na krawężnik, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 2. 2 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na próg spowalniajacy (zakładamy, że jest niższy niż 15 cm.) Wówczas wiemy, że po pokonaniu dystansu 20cm - połowa szerokości progu, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 20cm. 3 Rozważmy punkt dziedziny funkcji, jako punkt na autostradzie. Możemy założyć, że na przyrost wysokości około 15cm, potrzeba na pewno ponad 1m drogi.tym samym δ = 1m. a prawdopodobnie może być większa.

17 Interpretacja pojęcia ciagłości - cd. Przyjmijmy ɛ = 15cm. 1 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na krawężnik podczas parkowania. Wówczas wiemy, że po pokonaniu dystansy 2cm - najeżdżamy na krawężnik, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 2. 2 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na próg spowalniajacy (zakładamy, że jest niższy niż 15 cm.) Wówczas wiemy, że po pokonaniu dystansu 20cm - połowa szerokości progu, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 20cm. 3 Rozważmy punkt dziedziny funkcji, jako punkt na autostradzie. Możemy założyć, że na przyrost wysokości około 15cm, potrzeba na pewno ponad 1m drogi.tym samym δ = 1m. a prawdopodobnie może być większa.

18 Interpretacja pojęcia ciagłości - cd. Przyjmijmy ɛ = 15cm. 1 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na krawężnik podczas parkowania. Wówczas wiemy, że po pokonaniu dystansy 2cm - najeżdżamy na krawężnik, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 2. 2 Rozważmy punkt dziedziny funkcji, jako punkt na drodze odpowiadajacy najeżdżaniu na próg spowalniajacy (zakładamy, że jest niższy niż 15 cm.) Wówczas wiemy, że po pokonaniu dystansu 20cm - połowa szerokości progu, przyrost wysokości będzie mniejszy niż 13cm. Tym samym δ = 20cm. 3 Rozważmy punkt dziedziny funkcji, jako punkt na autostradzie. Możemy założyć, że na przyrost wysokości około 15cm, potrzeba na pewno ponad 1m drogi.tym samym δ = 1m. a prawdopodobnie może być większa.

19 Definicja ciagłości funkcji. Zwróćmy uwagę, że w każdym punkcie można było dobrać δ do ustalonego ɛ. Jeżeli zmniejszymy ɛ, potrafimy stosownie zmniejszyć δ. Definicja Funkcję nazywamy ciagł a jeżeli jest ciagła w każdym punkcie dziedziny. Czy ta funkcja może być nieciagła? Tak, np. przy idealnie pionowym krawężniku. Czy ciagła jest funkcja f : R \ {0} x 1 x R \ {0}.

20 Definicja ciagłości funkcji. Zwróćmy uwagę, że w każdym punkcie można było dobrać δ do ustalonego ɛ. Jeżeli zmniejszymy ɛ, potrafimy stosownie zmniejszyć δ. Definicja Funkcję nazywamy ciagł a jeżeli jest ciagła w każdym punkcie dziedziny. Czy ta funkcja może być nieciagła? Tak, np. przy idealnie pionowym krawężniku. Czy ciagła jest funkcja f : R \ {0} x 1 x R \ {0}.

21 Definicja ciagłości funkcji. Zwróćmy uwagę, że w każdym punkcie można było dobrać δ do ustalonego ɛ. Jeżeli zmniejszymy ɛ, potrafimy stosownie zmniejszyć δ. Definicja Funkcję nazywamy ciagł a jeżeli jest ciagła w każdym punkcie dziedziny. Czy ta funkcja może być nieciagła? Tak, np. przy idealnie pionowym krawężniku. Czy ciagła jest funkcja f : R \ {0} x 1 x R \ {0}.

22 Definicja ciagłości funkcji. Zwróćmy uwagę, że w każdym punkcie można było dobrać δ do ustalonego ɛ. Jeżeli zmniejszymy ɛ, potrafimy stosownie zmniejszyć δ. Definicja Funkcję nazywamy ciagł a jeżeli jest ciagła w każdym punkcie dziedziny. Czy ta funkcja może być nieciagła? Tak, np. przy idealnie pionowym krawężniku. Czy ciagła jest funkcja f : R \ {0} x 1 x R \ {0}.

23 Definicja ciagłości funkcji. Zwróćmy uwagę, że w każdym punkcie można było dobrać δ do ustalonego ɛ. Jeżeli zmniejszymy ɛ, potrafimy stosownie zmniejszyć δ. Definicja Funkcję nazywamy ciagł a jeżeli jest ciagła w każdym punkcie dziedziny. Czy ta funkcja może być nieciagła? Tak, np. przy idealnie pionowym krawężniku. Czy ciagła jest funkcja f : R \ {0} x 1 x R \ {0}.

24 w/g Heinego Twierdzenie Funkcja f : D x f (x) R jest ciagła w punkcie x 0 D jeżeli (xn) n=k D lim x n = x 0 lim f (x n ) = f (x 0 ). n n Tej definicji używamy raczej do wykazania, że funkcja nie jest ciagła.

25 w/g Heinego Twierdzenie Funkcja f : D x f (x) R jest ciagła w punkcie x 0 D jeżeli (xn) n=k D lim x n = x 0 lim f (x n ) = f (x 0 ). n n Tej definicji używamy raczej do wykazania, że funkcja nie jest ciagła.

26 o zachowaniu ciagłości funkcji ze względu na działania Twierdzenie Niech f, g : D x f (x) R będa funkcjami ciagłymi w pewnym punkcie x 0 D oraz λ R. Wówczas funkcje f + g, sa ciagłe w punkcie x 0. Ponadto jeżeli g(x 0 ) 0 to funkcja f g, jest prawidłowo określona w pewnym otoczeniu punktu x 0 i jest w tym punkcie ciagła. fg, λf f g

27 Ciagłość złożenia funkcji i funkcji odwrotnej Twierdzenie Niech f : R D G R, g : G R. Jeżeli funkcja f jest ciagła w pewnym punkcie x 0 D oraz funkcja g jest ciagła w y 0 = f (x 0 ) G to funkcja f g jest ciagła w x 0. Twierdzenie Niech f : R a, b c, d R będzie funkcja ciagł a i wzajemnie jednoznaczna. Wówczas funkcja do niej odwrotna jest również ciagła. Uwaga Twierdzenie nie zachodzi jeżeli przedział nie jest domknięty.

28 Ciagłość złożenia funkcji i funkcji odwrotnej Twierdzenie Niech f : R D G R, g : G R. Jeżeli funkcja f jest ciagła w pewnym punkcie x 0 D oraz funkcja g jest ciagła w y 0 = f (x 0 ) G to funkcja f g jest ciagła w x 0. Twierdzenie Niech f : R a, b c, d R będzie funkcja ciagł a i wzajemnie jednoznaczna. Wówczas funkcja do niej odwrotna jest również ciagła. Uwaga Twierdzenie nie zachodzi jeżeli przedział nie jest domknięty.

29 Ciagłość złożenia funkcji i funkcji odwrotnej Twierdzenie Niech f : R D G R, g : G R. Jeżeli funkcja f jest ciagła w pewnym punkcie x 0 D oraz funkcja g jest ciagła w y 0 = f (x 0 ) G to funkcja f g jest ciagła w x 0. Twierdzenie Niech f : R a, b c, d R będzie funkcja ciagł a i wzajemnie jednoznaczna. Wówczas funkcja do niej odwrotna jest również ciagła. Uwaga Twierdzenie nie zachodzi jeżeli przedział nie jest domknięty.

30 Przykład Przykład Niech { ctgx, dla x π f (x) = 2, 0) ; 1 x, dla x > 0, wówczas { arcctgx π, dla x (, 0 ; f 1 (x) = 1 x, dla x > 0. Funkcja f jest ciagła, ale f 1 nie jest ciagła w x = 0.

31 Przykład Przykład Niech { ctgx, dla x π f (x) = 2, 0) ; 1 x, dla x > 0, wówczas { arcctgx π, dla x (, 0 ; f 1 (x) = 1 x, dla x > 0. Funkcja f jest ciagła, ale f 1 nie jest ciagła w x = 0.

32 Własność Darboux Twierdzenie Niech będzie dana ciagła funkcja taka, że f : R a, b R f (a) < 0 < f (b). Istnieje wówczas przynajmniej jeden punkt c a, b taki, że f (x) = 0. Własność powyższa można wzmocnić, stwierdzajac, że dla każdej wartości C f (a), f (b) istnieje przynajmniej jeden argument c a, b ja osiagaj acy tzn. taki, że f (c) = C.

33 Własność Darboux Twierdzenie Niech będzie dana ciagła funkcja taka, że f : R a, b R f (a) < 0 < f (b). Istnieje wówczas przynajmniej jeden punkt c a, b taki, że f (x) = 0. Własność powyższa można wzmocnić, stwierdzajac, że dla każdej wartości C f (a), f (b) istnieje przynajmniej jeden argument c a, b ja osiagaj acy tzn. taki, że f (c) = C.

34 Weierstrassa o osiaganiu kresów Twierdzenie Niech będzie dana ciagła funkcja f : R a, b R. Istnieja wówczas c, d a, b takie, że dla dowolnego x a, b zachodza nierówności f (c) f (x) f (d). Twierdzenie to mówi, że dla każdej funkcji ciagłej określonej na przedziale domkniętym istnieja argumenty w których funkcja taka osiaga wartość maksymalna i minimalna.

35 Weierstrassa o osiaganiu kresów Twierdzenie Niech będzie dana ciagła funkcja f : R a, b R. Istnieja wówczas c, d a, b takie, że dla dowolnego x a, b zachodza nierówności f (c) f (x) f (d). Twierdzenie to mówi, że dla każdej funkcji ciagłej określonej na przedziale domkniętym istnieja argumenty w których funkcja taka osiaga wartość maksymalna i minimalna.

36 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy D. Zbiór i zbiór jego punktów skupienia moga być różne, tzn. nie można postawić inkluzji w żadna ze stron.

37 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy D. Zbiór i zbiór jego punktów skupienia moga być różne, tzn. nie można postawić inkluzji w żadna ze stron.

38 Granica funkcji Definicja Niech D x f (x) R, liczbę g R taka, że x 0 D. Granica funkcji f w punkcie x 0 nazywamy ɛ>0 δ>0 : x D x x 0 < δ f (x) g < ɛ.

39 definicja granicy funkcji w/g Heinego Twierdzenie Funkcja f : D x f (x) R posiada granicę g w punkcie x 0 D wtedy, i tylko wtedy gdy (xn) n=k D : lim x n = x 0 lim f (x n ) = g. n n Twierdzenie Granica funkcji jest jedyna.

40 definicja granicy funkcji w/g Heinego Twierdzenie Funkcja f : D x f (x) R posiada granicę g w punkcie x 0 D wtedy, i tylko wtedy gdy (xn) n=k D : lim x n = x 0 lim f (x n ) = g. n n Twierdzenie Granica funkcji jest jedyna.

41 ciagłość funkcji a istnienie granicy Twierdzenie Niech f : R D x f (x) R, x 0 D D. Funkcja f jest ciagła w punkcie x 0 wtedy, i tylko wtedy gdy istnieje granica funkcji w tym punkcie i jest równa jej wartości tzn. lim f (x) = f (x 0 ). x x 0

42 granica funkcji a działania Twierdzenie Niech f, g : R D R, x 0 D. Jeżeli funkcje f i g posiadaja w punkcie x 0 granice - lim f (x) = a, lim g(x) = b to: x x0 x x0 1 lim x x0 (f + g)(x) = a + b, 2 lim x x0 (f g)(x) = a b, 3 lim x x0 fg(x) = ab, 4 dla każdej liczby λ R zachodzi lim x x0 λf (x) = λa, 5 f jeżeli b 0 to lim x x0 g (x) = a b, przy czym funkcja f g otoczeniu punktu x 0. jest określona w pewnym

43 twierdzenie o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim g(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym zachodzi zwiazek f g h czyli istnieje ɛ taki, że dla każdego x (x 0 ɛ, x 0 + ɛ) D zachodza nierówności f (x) g(x) h(x) to istnieje granica funkcji g w punkcie x 0 i jest równa granicy funkcji f i h w tym punkcie.

44 twierdzenie o zachowaniu nierówności w granicy Twierdzenie Niech będzie dana funkcja f : R D R która posiada granicę w punkcie x 0 D. 1 Jeżeli dla pewnego a R istnieje otoczenie punktu x 0 w którym zachodzi nierówność f a (tzn. istnieje ɛ > 0 taki, że dla każdego x (x 0 ɛ, x 0 + ɛ) zachodzi nierówność f (x) a) to lim x x0 f (x) a. 2 Jeżeli lim x x0 f (x) > 0 to istnieje otoczenie x 0 w którym f > 0. Jeżeli w punkcie 1) powyższego twierdzenia dla pewnego otoczenia x 0 otrzymamy nierówność silna f > a to dla granicy dalej mamy tylko nierówność słaba lim f (x) a. x x 0

45 twierdzenie o zachowaniu nierówności w granicy Twierdzenie Niech będzie dana funkcja f : R D R która posiada granicę w punkcie x 0 D. 1 Jeżeli dla pewnego a R istnieje otoczenie punktu x 0 w którym zachodzi nierówność f a (tzn. istnieje ɛ > 0 taki, że dla każdego x (x 0 ɛ, x 0 + ɛ) zachodzi nierówność f (x) a) to lim x x0 f (x) a. 2 Jeżeli lim x x0 f (x) > 0 to istnieje otoczenie x 0 w którym f > 0. Jeżeli w punkcie 1) powyższego twierdzenia dla pewnego otoczenia x 0 otrzymamy nierówność silna f > a to dla granicy dalej mamy tylko nierówność słaba lim f (x) a. x x 0

46 WYBRANE GRANICE FUNKCJI 1 lim x 0 a x = 1, dla a > 0, 2 lim x 0 sin x x = 1, ( ) 3 lim x x x = e, ( ) x x = e, 4 lim x 5 lim x 0 a x 1 x = ln a, dla a > 0.

47 Granice jednostronne Definicja Niech f : R D R oraz x 0 D : 1 jeżeli dla każdej liczby δ > 0 zbiór (x 0 δ, x 0 ) D, tzn. zbiór skupia się po lewej stronie punktu x 0, oraz ɛ>0 δ>0 : x D (0 < x 0 x < δ) f (x) g < ɛ, to liczbę g nazywamy granica lewostronna funkcji f w punkcie x 0 co oznaczamy lim f (x). x x 0 2 jeżeli dla każdej liczby δ > 0 zbiór (x 0, x 0 + δ) D, tzn. zbiór skupia się po prawej stronie punktu x 0, oraz ɛ>0 δ>0 : x D (0 < x x 0 < δ) f (x) g < ɛ, to liczbę g nazywamy granica prawostronna funkcji f w punkcie x 0 co oznaczamy lim f (x). x x + 0

48 Granice jednostronne a granica funkcji Każdy punkt skupienia zbioru D musi skupiać się z przynajmniej jednej strony, tzn. dla każdego punktu x 0 D ma sens próba określenia granicy przynajmniej z jednej strony. Jeżeli granica ma sens tylko z jednej strony to przez granicę funkcji rozumiemy odpowiednia granicę jednostronna. Jeżeli ma sens zarówno granica z lewej jak i z prawej strony to zachodzi następujace twierdzenie: Twierdzenie Niech będzie dana funkcja f : R D R oraz punkt x 0 D taki, że jest punktem skupienia zarówno z lewej jak i z prawej strony. Wówczas funkcja ma f ma w punkcie x 0 granicę równa g wtedy i tylko wtedy gdy ma w tym punkcie granice prawostronna i lewostronna i granice te wynosza g.

49 Granice jednostronne a granica funkcji Każdy punkt skupienia zbioru D musi skupiać się z przynajmniej jednej strony, tzn. dla każdego punktu x 0 D ma sens próba określenia granicy przynajmniej z jednej strony. Jeżeli granica ma sens tylko z jednej strony to przez granicę funkcji rozumiemy odpowiednia granicę jednostronna. Jeżeli ma sens zarówno granica z lewej jak i z prawej strony to zachodzi następujace twierdzenie: Twierdzenie Niech będzie dana funkcja f : R D R oraz punkt x 0 D taki, że jest punktem skupienia zarówno z lewej jak i z prawej strony. Wówczas funkcja ma f ma w punkcie x 0 granicę równa g wtedy i tylko wtedy gdy ma w tym punkcie granice prawostronna i lewostronna i granice te wynosza g.

50 Granice jednostronne a granica funkcji Każdy punkt skupienia zbioru D musi skupiać się z przynajmniej jednej strony, tzn. dla każdego punktu x 0 D ma sens próba określenia granicy przynajmniej z jednej strony. Jeżeli granica ma sens tylko z jednej strony to przez granicę funkcji rozumiemy odpowiednia granicę jednostronna. Jeżeli ma sens zarówno granica z lewej jak i z prawej strony to zachodzi następujace twierdzenie: Twierdzenie Niech będzie dana funkcja f : R D R oraz punkt x 0 D taki, że jest punktem skupienia zarówno z lewej jak i z prawej strony. Wówczas funkcja ma f ma w punkcie x 0 granicę równa g wtedy i tylko wtedy gdy ma w tym punkcie granice prawostronna i lewostronna i granice te wynosza g.

51 Granice w ± Definicja Niech f : R D R : 1 jeżeli dla każdej liczby M > 0 zbiór (M, ) D jest niepusty, oraz ɛ>0 M>0 : x D (M, ) f (x) g < ɛ, to liczbę g nazywamy granica funkcji f w. 2 jeżeli dla każdej liczby M < 0 zbiór (, M) D jest niepusty, oraz ɛ>0 M<0 : x D (,M) f (x) g < ɛ, to liczbę g nazywamy granica funkcji f w.

52 Rozbieżność funkcji Definicja Niech D x f (x) R, x 0 D. Jeżeli K R δ>0 : x D x x 0 < δ f (x) > K to mówimy, że funkcja f jest w x 0 rozbieżna do. Jeżeli K R δ>0 : x D x x 0 < δ f (x) < K to mówimy, że funkcja f jest w x 0 rozbieżna do.

53 Rozbieżność w nieskończoności Definicja Niech f : R D R. Załóżmy, że dla dowolnego M zachodzi (M, + ) D. Wtedy: 1 lim x + f (x) = +, jeśli K R M R x D x > M = f (x) > K, 2 lim f (x) =, jeśli K R M R x D x > M = f (x) < K. Załóżmy że x + dla dowolnego M zachodzi (, M) D, wtedy 3 lim x f (x) = +, jeśli K R M R x D x < M = f (x) > K, 4 lim x f (x) =, jeśli K R M R x D x < M = f (x) < K.

54 Symbole nieoznaczone Dla szacowania granic funkcji zarówno jednostronnych jak i dwustronnych można stosować tabele znane z twierdzenia o ciagach.

55 Asymptoty poziome Definicja Niech f : R D R. Przyjmijmy, że sa spełnione założenia dotyczace dziedziny przy których poniższe granice maja sens. 1 Jeśli lim f (x) = b R, to mówimy, że funkcja f ma w + asymptotę x + pozioma o równaniu y = b. 2 Jeśli lim f (x) = b R, to mówimy, że funkcja f ma w asymptotę x pozioma o równaniu y = b. 3 Jeśli lim f (x) = b = lim f (x), to mówimy, że funkcja f ma asymptotę x + x pozioma (obustronna) o równaniu y = b.

56 Asymptoty pionowe Definicja Niech f : R D R. Przyjmijmy, że sa spełnione założenia dotyczace dziedziny przy których poniższe granice maja sens. 1 Jeśli lim x x + 0 f (x) = ±, to mówimy, że funkcja f ma asymptotę pionowa prawostronna o równaniu x = x 0. 2 Jeśli lim x x 0 f (x) = ±, to mówimy, że funkcja f ma asymptotę pionowa lewostronna o równaniu x = x 0. 3 Jeśli lim f (x) = ± i lim f (x) = ±, to mówimy, że funkcja f ma x x + 0 x x 0 asymptotę pionowa (obustronna) o równaniu x = x 0.

57 Asymptoty ukośne Definicja Niech f : R D R. Funkcja liniowa y = ax + b jest asymptota ukośna w ( ), jeśli: lim (f (x) (ax + b)) = 0, lim x (f (x) (ax + b)) = 0. x Funkcja liniowa y = ax + b jest asymptota ukośna(obustronn a), jeśli sa spełnione oba warunki. WZÓR a = f (x) lim x + x, b = lim (f (x) ax). x +

58 Przykłady asymptot Oblicz asymptoty funkcji: f (x) = x x+1, g(x) = x + e, h(x) = xarctgx, ( ) k(x) = arctg x x+1.

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Granica funkcji. 16 grudnia Wykład 5

Granica funkcji. 16 grudnia Wykład 5 Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ

Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska. Wykład 3. ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 3 ANALIZA FUNKCJI JEDNEJ ZMIENNEJ Deinicja (unkcja) Niech zbiory XY, będą niepuste Funkcją określoną na zbiorze X o wartościach w

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość

Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;

Bardziej szczegółowo

Ciągłość funkcji. Seminarium dyplomowe powtórzenie wiadomości. Jan Kowalski. 22 maja Uniwersytet Mikołaja Kopernika w Toruniu

Ciągłość funkcji. Seminarium dyplomowe powtórzenie wiadomości. Jan Kowalski. 22 maja Uniwersytet Mikołaja Kopernika w Toruniu Seminarium dyplomowe powtórzenie wiadomości Uniwersytet Mikołaja Kopernika w Toruniu 22 maja 2013 1 Podstawowe definicje i fakty 2 funkcji w punkcie Definicja Niech f będzie funkcją określoną na zbiorze

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Matematyka ZLic -. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych. Granica ciągu Ciąg a n ma granicę właściwą g R i piszemy jeśli lim n a n g lub a n g gdy n NN n N a n g

Bardziej szczegółowo

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji

Bardziej szczegółowo

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39

Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39 Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Ciągłość funkcji i podstawowe własności funkcji ciągłych. Ciągłość funkcji i podstawowe własności funkcji ciągłych. Definicja (otoczenie punktu) Otoczeniem punktu x 0 R, o promieniu nazywamy zbiór x R taki, że: inaczej x x 0 x x 0, x 0 Definicja (ciągłość w punkcie)

Bardziej szczegółowo

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia) Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji

Bardziej szczegółowo

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Lista zagadnień omawianych na wykładzie w dn r. :

Lista zagadnień omawianych na wykładzie w dn r. : Lista zagadnień omawianych na wykładzie w dn. 29.0.208r. : Granica funkcji Definicja sąsiedztwa punktu. Sąsiedztwo 0 R o promieniu r > 0: S 0, r = 0 r, 0 + r\{ 0 } 2. Sąsiedztwo lewostronne 0 R o promieniu

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Granica funkcji wykład 5

Granica funkcji wykład 5 Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g

Bardziej szczegółowo

Wykłady z matematyki - Granica funkcji

Wykłady z matematyki - Granica funkcji Rok akademicki 2016/17 UTP Bydgoszcz Granica funkcji Otoczenie punktu 0 to przedział ( 0 ɛ, 0 + ɛ) dla każdego ɛ > 0 Sąsiedztwo punktu 0 to jego otoczenie bez punktu 0. Jeżeli funkcja jest określona w

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI

Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

Pochodna funkcji. Zastosowania

Pochodna funkcji. Zastosowania Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie

Bardziej szczegółowo

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22

Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22 Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,

Bardziej szczegółowo

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji

4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji 4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel rok akademicki 03/04, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t:

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Rachunek Różniczkowy

Rachunek Różniczkowy Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

Wykłady 11 i 12: Całka oznaczona

Wykłady 11 i 12: Całka oznaczona Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć

Bardziej szczegółowo

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest

Bardziej szczegółowo

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31 Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb

Bardziej szczegółowo

Analiza matematyczna - 1. Granice

Analiza matematyczna - 1. Granice Analiza matematyczna - Granice Celem tej części wykładu jest uściślenie, co rozumiemy przez stwierdzenie, że jakaś zmienna ekonomiczna zachowuje się w pewien sposób w przybliżeniu bądź w granicy Przykład

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej

1. Pochodna funkcji. 1.1 Pierwsza pochodna - definicja i własności Definicja pochodnej . Pierwsza pochodna - definicja i własności.. Definicja pochodnej Definicja Niech f : a, b) R oraz niech 0 a, b). Mówimy, że funkcja f ma pochodna w punkcie 0, którą oznaczamy f 0 ), jeśli istnieje granica

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 5

Pochodna funkcji: definicja, podstawowe własności wykład 5 Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Pochodna funkcji odwrotnej

Pochodna funkcji odwrotnej Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Rachunek różniczkowy funkcji f : R R

Rachunek różniczkowy funkcji f : R R Racunek różniczkowy funkcji f : R R Załóżmy, że funkcja f jest określona na pewnym otoczeniu punktu x 0 (tj. istnieje takie δ > 0, że (x 0 δ, x 0 + δ) D f - dziedzina funkcji f). Definicja 1. Ilorazem

Bardziej szczegółowo

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa

Pochodna funkcji a styczna do wykresu funkcji. Autorzy: Tomasz Zabawa Pochodna funkcji a do wykresu funkcji Autorzy: Tomasz Zabawa 2018 Pochodna funkcji a do wykresu funkcji Autor: Tomasz Zabawa Pojęcie stycznej do wykresu funkcji f w danym punkcie wykresu P( x 0, f( x 0

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Przekształcenia wykresów funkcji

Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Przekształcenia wykresów funkcji Jerzy Rutkowski Teoria Niech f : R R będzie dowolną funkcją i niech liczby a, k R spełniają warunki: a > 0 i k 0. Związek między funkcją

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Pochodna funkcji

Analiza matematyczna i algebra liniowa Pochodna funkcji Analiza matematyczna i algebra liniowa Pochodna funkcji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo