Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty
|
|
- Alina Nowicka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x) = 2x 3 x+1 Rozwi azanie: Funkcja f jest nieokreślona dla x = 1. Liczymy granice jednostronne funkcji f w x = 1 : x 1 x + 1 = x 1 + x + 1 = Wniosek: funkcja f posiada asymptotȩ pionow a w punkcie x = 1. Badamy granice funkcji przy x oraz x. x + 1 = 2 x + 1 = 2 Wniosek: funkcja posiada asymptotȩ poziom a (dwustronn a) o równaniu y = 2. Sprawdzamy czy istnieje asymptota ukośna, w tym celu liczymy granice x(x + 1) = 0 Wniosek: brak asymptot ukośnych. x(x + 1) = 0 b)f(x) = x 4 x 2 1
2 Rozwi azanie: Funkcja f jest nieokreślona dla x = 0. Liczymy granice jednostronne funkcji f w x = 0 : x 0 x 4 x 2 = x 4 x 0 + x 2 = Wniosek: funkcja posiada asymptotȩ pionow a w punkcie x = 0. Badamy granice funkcji przy x oraz x. x 4 x 2 = x 4 x 2 = Wniosek: funkcja nie posiada asymptoty poziomej. Sprawdzamy czy istnieje asymptota ukośna, w tym celu liczymy granice x(x + 1) = 0 Wniosek: brak asymptot ukośnych. x(x + 1) = 0 x c) f(x) = 3 (x+1)(x 2) Rozwi azanie: Funkcja f jest nieokreślona dla x = 1 oraz x = 2. Liczymy granice jednostronne funkcji f w x = 1 : x 1 (x + 1)(x 2) = oraz w punkcie x = 2 x 1 + (x + 1)(x 2) = x 2 (x + 1)(x 2) = x 2 + (x + 1)(x 2) = Wniosek: funkcja posiada asymptoty pionowe w punktach x = 1 oraz x = 2. Badamy granice funkcji przy x oraz x. Wniosek: funkcja nie posiada asymptot poziomych. (x + 1)(x 2) = (x + 1)(x 2) = 2
3 Sprawdzamy czy istnieje asymptota ukośna, w tym celu liczymy granice oraz x(x + 1)(x 2) = 1 (x + 1)(x 2) 1 x = 1 co daje asymptotȩ ukośna y = x + 1 przy x. Podobnie sprawdzamy czy istnieje asymptota ukośna przy x. Liczymy granice oraz co daje asymptotȩ ukośn a y = x + 1 przy x. x(x + 1)(x 2) = 1 (x + 1)(x 2) 1 x = 1 Zadanie 2. Wyznacz przedzia ly monotoniczności nastȩpuj acych funkcji a) f(x) = + 5x 9 Rozwiazanie: Liczymy najpierw pochodn a f (x) = 3x oraz zauważamy, że nierówność 3x > 0 jest spe lniona dla dowolnego x R. Czyli f(x) = + 5x 9 lest rosn aca w ca lej swojej dziedzinie. b) f(x) = 2 + 9x x Rozwiazanie: Liczymy najpierw pochodn a f (x) = 6x x + 12 oraz rozwi azujemy nierówność lub równoważn a jej W tym celu obliczamy pierwiastki równania 6x x + 12 > 0 x 2 + 3x + 2 > 0. x 2 + 3x + 2 = 0 = = 1 co daje x 1 = 2 lub x 2 = 1. Zatem dla x (, 2) ( 1, ) funkcja jest rosn aca, natomiast dla x ( 2, 1) jest funkcj a malej ac a. c) f(x) = x2 3 x 2 +3 Rozwi azanie: Liczymy najpierw pochodn a f (x) = 2x(x2 +3) 2x(x 2 3) (x 2 +3) 2 = 12x (x 2 +3) 2 oraz rozwi azujemy nierówność f (x) > 0. Mamy wiȩc f (x) > 0 wtedy i tylko wtedy gdy 6x > 0. Zatem dla x > 0 funkcja jest rosn aca natomiast dla x < 0 funkcja jest malej aca. Zadanie 3. Wyznacz ekstrema funkcji f jeśli: 3
4 a) f(x) = x 2 3x + 8 Rozwi azanie: Liczymy pochodn a f (x) = i rozwi azujemy równanie f (x) = 0 co w naszym przypadku daje 2x 3 = 0 oraz x 0 = 1.5 Z postaci pochodnej otrzymujemy, że dla x < 1.5 zachodzi f (x) < 0 oraz dla x > 1.5 zachodzi f (x) > 0, co daje, ze w punkcie x 0 = 1.5 funkcja f osiaga minimum lokalne. b) f(x) = x 4 4x Rozwi azanie: Liczymy pochodn a f (x) = 4 8x i rozwi azujemy równanie f (x) = 0. Mamy 4 8x = 4x(x 2 2), co daje nastȩpuj ace rozwi azania x 1 = 0 lub x 2 = 2 lub = 2. Analizujemy teraz zachowanie pochodnej w otoczeniach tych trzech punktów korzystaj ac z wykresu funkcji y = 4x(x 2 2). W lewostronnym otoczeniu punktu x 1 = 0 pochodna f jest dodatnia a w prawostronnym ujemna, zatem w x 1 = 0 funkcja f przyjmuje lokalne maksimum. W lewostronnym otoczeniu punktu x 2 = 2 pochodna f jest ujemna a w prawostronnym dodatnia, zatem w x 2 = 2 funkcja f przyjmuje lokalne minimum. W lewostronnym otoczeniu punktu = 2 pochodna f jest ujemna a w prawostronnym dodatnia, zatem w x 2 = 2 funkcja f przyjmuje lokalne minimum. c) f(x) = x+1 x 2 +4 Rozwi azanie: Obliczamy pochodn a f (x) = 1(x2 +4) 2x(x+1) = x2 2x+4 oraz rozwi azujemy (x 2 +4) 2 (x 2 +4) 2 równanie f (x) = 0. Wiadomo, że f (x) = 0 wtedy i tylko wtedy gdy x 2 2x+4 = 0. Rozwi azuj ac to równanie otrzymujemy: = 20 oraz x 1 = 1 5, x 2 = Pochodna w lewostronnym otoczeniu punktu x 1 jest ujemna a w prawostronnym otoczeniu dodatnia, zatem w x 1 funkcja f osi aga minimum lokalne. Podobnie, pochodna w lewostronnym otoczeniu punktu x 2 jest dodatnia a w prawostronnym otoczeniu ujemna, zatem w x 2 funkcja osi aga maksimum lokalne. Zadanie 4. Znajdź najwiȩksze i najmniejsze wartości funkcji na wskazanych przedzia lach a) f(x) = x 2 + 2x 4, dla x [0, 2] Rozwi azanie: Liczymy pochodn a f (x) = 2x+2, otrzymujemy miejsce zerowe pochodnej x 0 = 1. W punkt x 0 = 1 nie należy do przedzia lu [0, 2]. Funkcja f nie ma lokalnych ekstremów w przedziale [0, 2]. Liczymy wartości funkcji w punktach brzegowych. Otrzymujemy f(0) = 4 f(2) = 4 czyli najwiȩksza wartość funkcji f, w przedziale [0, 2], wynosi 4 a najmniejsza -4. b) f(x) = x 2 + 2x 4, dla x [ 2, 2] Rozwi azanie: Liczymy pochodn a f (x) = 2x+2, otrzymujemy miejsce zerowe pochodnej x 0 = 1. W punkcie x 0 = 1 [ 2, 2] funkcja f ma minimum lokalne. Liczymy wartości funkcji w punktach brzegowych oraz w x 0, otrzymujemy f( 2) = 4, f(2) = 4 oraz f( 1) = 5. W przedziale [ 2, 2] funkcja osiaga najwiȩksz a wartość 4 dla x 1 = 2 oraz najmniejsz a wartość -5 w punkcie x 0 = 1. c) f(x) = 2x+5 x+1 dla x [ 3, 1) ( 1, 3] Rozwi azanie: W punkcie x = 1 funkcja jest nieokreślona. 2x + 5 x 1 x + 1 = 2x + 5 x 1 + x + 1 = 4
5 czyli w x = 1 istnieje asymptota pionowa funkcji f. Zatem funkcja f nie osi aga w tym zbiorze ani skończonej wartości maksymalnej ani skończonej minimalnej. Zadanie 5. Wyznaczyć punkty przegiȩcia, przedzia ly wypuk lości oraz wklȩs lości funkcji a) f(x) = 3x 4 + 7x + 1 dla x (0, ) Rozwi azanie: Liczymy pierwsz a pochodn a f (x) = oraz drug a f (x) = 36x 2. Dla dowolnego x (0, ) zachodzi f (x) > 0 czyli funkcja jest wypuk la w ca lej swojej dziedzinie. b) f(x) = e x Rozwi azanie: Liczymy pierwsz a pochodn a f (x) = e x 1 oraz drug a f (x) = e x 1. Dla dowolnego x (, ) zachodzi f (x) > 0 czyli funkcja jest wypuk la w ca lej swojej dziedzinie. c) f(x) = x 4 x 2 Rozwi azanie: Liczymy pierwsz a pochodn a f (x) = 4 3x 2 2x oraz drug a f (x) = 12x 2 6x 2. Szukamy pierwiastków równania 12x 2 6x 2 = 0. Po obliczeniach otrzymujemy pierwiastki x 1 = oraz x 2 = Dla x (, x 1 ) mamy f (x) > 0 czyli funkcja f jest wypuk la w tym przedziale. Dla x (x 2, ) mamy f (x) > 0 czyli funkcja f jest wypuk la w tym przedziale. Natomiast dla x (x 1, x 2 ) mamy f (x) < 0 czyli funkcja f jest wklȩs la w tym przedziale. Punkty x 1 oraz x 2 s a punktami przegiȩcia. 1 Zadania do samodzielnego rozwi azania Zadanie 1.1. Znajdź równanie asymptot funkcji f jeśli: a) f(x) = 2x 3 x+1 Odp. Asymptota pionowa w x = 1, asymptota pozioma y = 2, brak asymptot ukośnych. b) f(x) = 7x+3 x 10 Odp. Asymptota pionowa w x = 10, asymptota pozioma y = 7, brak asymptot ukośnych. c) f(x) = 1 x 2 +1 Odp. asymptota pozioma y = 0. d) f(x) = 1 1 x 2 Odp. Asymptota pionowa w x = 1 lub x = 1, asymptota pozioma y = 0, brak asymptot ukośnych. Zadanie 2.1. Wyznacz przedzia ly monotoniczności nastȩpuj acych funkcji a) f(x) = + 3x 2 + 2x + 2 Odp. Rosn aca w (1 10/6, /6), malej aca w (, 1 10/6) oraz w (1 + 10/6, ). b) f(x) = 5 1 x Odp. Malej aca w (, 1), rosn aca w (1,.) c) f(x) = 7x+3 x 10 Odp. Malej aca w (, 10) oraz w (10, ). d) f(x) = x x
6 Odp. Malej aca w (, 2) oraz w (2, ), rosn aca w ( 2, 2). Zadanie 3.1. Wyznacz ekstrema funkcji f jeśli: a) f(x) = + 3x 2 + 9x + 2 Odp. Min w x 1 = 1, max w x 2 = 3. b) f(x) = 3x+2 x 2 +1 Odp. Min w x 1 = 13 3, max w x 2 = c) f(x) = 9 x2 x+5 Odp. Min w x 1 = 9, max w x 2 = 1. d) f(x) = x x Odp. Min w x 1 = 1. Zadanie 4.1. Znajdź najwiȩksze i najmniejsze wartości funkcji na wskazanych przedzia lach a) f(x) = x 2 + 2x 4, dla x [0, 2] Odp. Wartość min f(0) = 4, wartość max f(2) = 4 b) f(x) = 3 x 1 dla x [0, 2] Odp. Wartość min f(0) = 1/3, wartość max f(2) = 1 c) f(x) = 3x 2 + 6x + 9 dla x [ 4, 2] Odp. Wartość min f( 4) = 63, wartość max f(1) = 13. d) f(x) = x+1 x 2 dla x [3, 5] Odp. Wartość min f(5) = 2, max f(3) = 4. Zadanie 5.1. Wyznaczyć punkty przegiȩcia, przedzia ly wypuk lości oraz wklȩs lości funkcji a) f(x) = x2 +x 2 x 2 Odp. f wypuk la dla x > 2, wklȩs la dla x < 2. Brak punktu przegiȩcia. b) f(x) = log(1 + x 2 ) Odp. f wypuk la dla x < 1 oraz x > 1, wklȩs la dla x ( 1, 1). Punkty przegiȩcia dla x = 1 lub x = 1. c) f(x) = x x 2 2x + 1 Odp. Wypuk la w (, 2) oraz (1, ). Wklȩs la ( 2, 1), punkty przegiȩcia x = 2 lub x = 1. d) f(x) = x x 2 +1 Odp. Wypuk la w ( 3, 0) ( 3, ). Wklȩs la w (, 3) (0, 3). Punkty przegiȩcia : 3, 0, 3. 6
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala
Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj
Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:
Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji
Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA.
WKLĘSŁOŚĆ I WYPUKŁOŚĆ KRZYWEJ. PUNKT PRZEGIĘCIA. Załóżmy, że funkcja y f jest dwukrotnie różniczkowalna w Jeżeli Jeżeli przedziale a;b. Punkt P, f nazywamy punktem przegięcia funkcji y f wtedy i tylko
SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 1 0 3 1 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE Prof. dr. Tadeusz STYŠ Warszawa 018 1 1 Projekt dziesi aty Contents
Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0 2 1 0 3 1 2 x Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Ekstrema globalne funkcji
SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
Analiza Matematyczna. Lista zadań 10
Analiza Matematyczna Lista zadań 10 Zadanie 1 pole figury ograniczonej krzywymi y 2 = 2x, x + y = 1. Zadanie 2 objȩtość bryły V powstałej z obrotu wokół osi Ox powierzchni ograniczonej krzyw a o równaniu
Pochodna funkcji. Zastosowania pochodnej. Badanie przebiegu zmienności
Temat wykładu: Pochodna unkcji. Zastosowania pochodnej. Badanie przebiegu zmienności Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Pochodna Zagadnienia
Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x
ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo
POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy
POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.
VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym
Funkcje wielu zmiennych
Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem
Egzamin podstawowy (wersja przykładowa), 2014
Egzamin podstawowy (wersja przykładowa), Analiza Matematyczna I W rozwiązaniach prosimy formułować lub nazywać wykorzystywane twierdzenia, przytaczać stosowane wzory, uzasadniać wyciągane wnioski oraz
Pierwsze kolokwium z Matematyki I 4. listopada 2013 r. J. de Lucas
Pierwsze kolokwium z Matematyki I 4. listopada 03 r. J. de Lucas Uwagi organizacyjne: Każde zadanie rozwi azujemy na osobnej kartce, opatrzonej imieniem i nazwiskiem w lasnym oraz osoby prowadz acej ćwiczenia,
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI. JJ, IMiF UTP
Wykłady z matematyki inżynierskiej EKSTREMA FUNKCJI JJ, IMiF UTP 05 MINIMUM LOKALNE y y = f () f ( 0 ) 0 DEFINICJA. Załóżmy, że funkcja f jest określona w pewnym otoczeniu punktu 0. MINIMUM LOKALNE y y
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Rozwiązania prac domowych - Kurs Pochodnej. x 2 4. (x 2 4) 2. + kπ, gdzie k Z
1 Wideo 5 1.1 Zadanie 1 1.1.1 a) f(x) = x + x f (x) = x + f (x) = 0 x + = 0 x = 1 [SZKIC] zatem w x = 1 występuje minimum 1.1. b) f(x) = x x 4 f (x) = x(x 4) x (x) (x 4) f (x) = 0 x(x 4) x (x) (x 4) =
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.
Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji
Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW
5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu
Wykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
t) x 2 a)x 2 4x + 3 < 0 b) 3x 2 21x 30 > 0 c) x > 1 x d)2 x 2x + 3 < 1 e) > 1 < 1 m)3 n)2
Zestaw I - Równania i nierówności kwadratowe logarytmiczne i wyk ladnicze.. Rozwi azać równania: a) 2 + 6 = 0 b) 2 + 3 4 = 0 c) 2 2 + 6 = 0 d) 2 4 = 0 e)2 3 + 2 3 + 6 = 0 f) 4 4 3 + 2 4 = 0 g)2 2 2 = 0
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno
Zadanie 1 x 2 2mx+4m 3=0 ma dwa różne pierwiastki? Odp: m ( ; 1) (3 ; ) Zadanie 2 mx 2 +(2m 2) x+m+1=0 ma dwa różne pierwiastki? Odp: m ( ;0) (0; 1 3 ) Zadanie 3 ma jeden pierwiastek? Odp: m = -2, m =
ROZWIĄZANIA I ODPOWIEDZI
Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,
ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Pochodna i jej zastosowania
Pochodna i jej zastosowania Andrzej Musielak Str Pochodna i jej zastosowania Definicja pochodnej f( Przy założeniu, że funkcja jest określona w otoczeniu punktu 0 jeśli istnieje skończona granica 0+h)
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Wykład 13. Informatyka Stosowana. 14 stycznia 2019 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 34
Wykład 13 Informatyka Stosowana 14 stycznia 2019 Magdalena Alama-Bućko Informatyka Stosowana Wykład 13 14.01.2019, M.A-B 1 / 34 Pochodne z funkcji elementarnych c = 0 (x n ) = nx n 1 (a x ) = a x ln a,
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI
RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja
Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
Pierwiastki arytmetyczne n a
Chapter 1 Pierwiastki arytmetyczne n a Operacja wyci aganie pierwiastka stopnia n z liczby a jest odwrotn a operacj a do potȩgowania, jeżeli operacja odwrotna jest wykonalna w liczbach rzeczywistych. Zacznijmy
Asymptoty funkcji. Pochodna. Zastosowania pochodnej
Temat wykładu: Asymptoty unkcji. Pochodna. Zastosowania pochodnej Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Asymptoty unkcji Zagadnienia 2. Pochodna
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x
Wykład 6, pochodne funkcji. Siedlce
Wykład 6, pochodne funkcji Siedlce 20.12.2015 Definicja pochodnej funkcji w punkcie Niech f : (a; b) R i niech x 0 ; x 1 (a; b), x0 x1. Wyrażenie nazywamy ilorazem różnicowym funkcji f między punktami
Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1
1 TEST WSTĘPNY 1. (1p) Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą. Spośród liczb f(42), f(44), f(45), f(48) A. f(42) B. f(44) C. f(45)
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
Wykresy i własności funkcji
Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie
Granica funkcji. 16 grudnia Wykład 5
Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Funkcje dwóch zmiennych
Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Wyrażenia wymierne (19 h) Przekształcanie wielomianów Wyrażenia wymierne 4 Równania
Granica funkcji wykład 5
Granica funkcji wykład 5 dr Mariusz Grządziel 4 listopada 200 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie g
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel rok akademicki 03/04, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t:
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna
Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?
CHEMIA KWANTOWA MONIKA MUSIA L. Ćwiczenia. mm
CHEMIA KWANTOWA MONIKA MUSIA L Ćwiczenia METODY PRZYBLIŻONE ROZWIA ZYWANIA RÓWNANIA SCHRÖDINGERA METODA WARIACYJNA metoda wariacyjna ĤΨ n = E n Ψ n Ψ n ortonormalne Szukamy rozwi azań dla stanu podstawowego,
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA
FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych) Przy czym błąd, jaki popełniamy zastępując przyrost funkcji
Wykład 5 De.5 (różniczka unkcji Niech unkcja ma pochodną w punkcie. Różniczką unkcji w punkcie nazywamy unkcję d zmiennej określoną wzorem. Fakt 3.(zastosowanie różniczki do obliczeń przybliżonych Jeżeli
Granice funkcji-pojęcie pochodnej
Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego
18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.
1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21
Granice funkcji XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21 Granica funkcji Definicje Granica właściwa funkcji w punkcie wg Heinego Liczbę g nazywamy granicą właściwą funkcji f w punkcie
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 120 Kursywą
Analiza Matematyczna I Wydział Nauk Ekonomicznych. wykład XI
Analiza Matematyczna I Wydział Nauk Ekonomicznyc wykład XI dr ab. Krzysztof Barański, prof. UW dr Waldemar Pałuba Uniwersytet Warszawski rok akad. 0/3 semestr zimowy Racunek różniczkowy Pocodna funkcji
na p laszczyźnie kartezjaṅskiej prowadzimy prost a o rȯwnaniu s 1. (1.1) s 0 + t 1 t 0
Chapter 1 Interpolacja 1.1 Interpolacja liniowa Zacznijmy opis pojȩcia inter-polacji od prostego przyk ladu. Przyk lad 1.1 Oblicz ile kilometrȯw przejecha l samochȯd po 3 godzinach jazdy, jeżeli po jednej
MATEMATYKA. Skrypt dla studentów kierunków przyrodniczych
MATEMATYKA Skrypt dla studentów kierunków przyrodniczych Małgorzata Graczyk Poznań, 015 Wydawnictwo Rafał Zieliński i Recenzent: prof. dr hab. Bronisław Ceranka Małgorzata Graczyk c ISBN 978-83-940663-0-7
Pochodna funkcji. Zastosowania
Pochodna funkcji Zastosowania Informatyka (sem.1 2015/16) Analiza Matematyczna Temat 3 1 / 33 Niektóre zastosowania pochodnych 1 Pochodna jako narzędzie do przybliżania wartości 2 Pochodna jako narzędzie
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji
4.3 Wypukłość, wklęsłość l punkty przegięcia wykresu funkcji Definicja 4.6. Wykres funkcji różniczkowalnej w punkcie Xo nazywamy wypukłym (odpowiednio wklęsłym) w punkcie xo, jeżeli istnieje takie sąsiedztwo
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Analiza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)
1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec
Wprowadzenie z dynamicznej optymalizacji
Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI
FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b
Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska
Ciągłość funkcji jednej zmiennej rzeczywistej Autorzy: Anna Barbaszewska-Wiśniowska 2018 Spis treści Definicja ciągłości funkcji. Przykłady Funkcja nieciągła. Typy nieciągłości funkcji Własności funkcji