1 Funkcja wykładnicza i logarytm
|
|
- Joanna Sosnowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > Znając wykres funkcji y = 3 x sporządzić wykresy funkcji: (a) y = 3 x 1 ; (b) y = 3 x ; (c) y = 3 x 4. Rozwiązać równania : (a) 6 x x = 37 ; (b) 4 x 9 2 x + 8 = 0 ; (c) 3 2x x = Rozwiązać nierówności: (a) 3 x > 27 ; (b) 9 4 < 3 ; (c) 3 x+4 < 3 1 x 6. Podać dziedzinę oraz sporządzić wykres funkcji: (a) y = log 2 x ; (b) y = log 2 x + 1 ; (c) y = log 1/2 (1 x) 7. Obliczyć wartości: (a) log 10 (1/100) ; (b) log 1/3 27 ; (c) log 1/9 ; (d) log 1/2 1 ; (e) log 1/2 1/8; (f) log 1/8 1/2 ; (g) log 2 8 ; (h) log 2/ Wyznaczyć dzidzinę funkcji: f(x) = log 10 (x 2 4) + 6 2x ; g(x) = log 10 (9 x ) ; h(x) = log 3 x 2 9. Rozwiązać równanie: (a) log 10 (x 3) log 10 (2 3x) = 1 ; (b) log 10 (54 x 2 ) = 2 log 10 x ; log (c) 10 7x log 10 (2x 7) = 2 ; (d) log 10(2x 5) log 10 (x 2 8) = 1 2
2 2 Funkcje trygonometryczne 1. Podać wartości: sin ; cos ; tg( ) ; cos ; sin( ) ; tg( 249) 2. Obliczyć sin(x) wiedząc, że tg(x) = 15/8 oraz x (0; π/2) 3. Obliczyć sin(x) wiedząc, że tg(x) = 3/4 oraz x (π/2; π) 4. Obliczyć cos x) wiedząc, że tg(x) = 1/2 oraz x (π; 3π/2) 5. Obliczyć tg(x) wiedząc, że cos(x) = 3/2 oraz x ( π/2; 0) 6. Uprościć wyrażena: sin 2 x cos x + cos 3 x ; cos x 1 + tg 2 x ; (1 sin x)(1 + sin x) ; 7. Narysować wykresy funkcji: f(x) = sin 2x ; g(x) = sin(x + π/4) ; h(x) = 2 sin x ; j(x) = sin x ; k(x) = sin x + sin x ; l(x) = cos x cos x 1 cos 2 x 1 ; 1 sin2 x 1 cos 2 x ; sin x cos 2x cos x sin 2x 8. Znając wartości funkcji trygonometrycznych dla kątów 30 0, 45 0 ; 60 0 obliczyć stosując odpowiednie wzory : cos(15 0 ) ; sin(75 0 ) ; tg(15 0 ) 9. Obliczyć wartości podanych wyrażeń stosując odpowiednie wzory : (a) sin 12 0 cos cos 12 0 sin 18 0 ; (b) cos sin tg tg25 0 ; (c) 1 tg85 0 tg Obliczyś sin 2x i cos 2x jeśli sin x = 0, 6 oraz x jest kątem ostrym. 11. Podać wartości funkcji: (a) arcsin(1/2) ; arcsin( 2/2) ; arcsin 3 ; (b) arccos 0 ; arccos 1 ; arccos( 1/2) ; arccos( 2/2) (c) ; arctan 1 ; arctan 3 ; arctan( 3/3)
3 3 Miscellanea 1. Obliczyć wartości symboli Newtona: ( ) ( ) 5 10 (a) 2 4 ( ) ( ) (b) ( ) 100 (c) 3 [10 ; 210 ] [190 ; ] [161700] porównać dwa ostatnie wyniki i wyjaśnić. ( ) ( ) ( ) ( ) n + 2 n Obliczyć wartości:,,,, n 3. Uprościć wyrażenia: (n + 1)!(2n)! 2n!(2n 1)! ; (n!) 2 (n 1)!(n + 1)! 4. Rozwinąć wyrażenia: (a + 2) 5 ; (a 1) 6 ; ( 2 1) 6 ; (1 3x) Obliczyć: (a b) 5 ; (1 a) 7 ; (1 2) 6 6. Obliczyć współczynnik przy x 2 w rozwinięciu sumy (1 x) Uzasadnić, że dla dowolnej liczby naturalnej zachodzą równości: (a) (2n 1) = n 2 (b) (2n 1) 2 = n(4n2 1) (c) n (n+1) = n n+1 (d) 1 1! + 2 2! n n! = (n + 1)! 1 8. Uzasadnić, że dla dowolnej liczby naturalnej n jest prawdziwe: (a) liczba n jest podzielna przez 3. (b) liczba n 3 + 3n 2 + 2n jest podzielna przez 6, (c) liczba 10 n ( 1) n jeszt podzielna przez 11. 3
4 4 Granica ciągu 1. Kiedy ciągi : a n = n/(2n + 1), b n = 3n/(2n 1), c n = (2 n)/(2 + n) różnią się od swoich granic mniej aniżeli: (a) 1/100 [25 ; 76 ; 399] (b) ϵ > 0 2. Obliczyć granice ciągów : (a) a n = 2n2 + n + 5 n (3n 1)(2n + 1) (b) b n = (n + 2)(6n + 2) 4n + 5 (c) c n = n + 1 (d) d n = ( n + 5) 2 n + 1 (4n 2 + 3) (2n 3) (e) e n = (3n + 1) n(n + 5) [2] [1] [2] [1] [4/3] (f) f n = n n 2 5 [0] (g) g n = n 2 + 5n + 1 n 2 1n + 4 [3] ( (h) h n = 1 2 ) n [e 2 ] n (i) i n = (1 + 1 ) n n 2 ( ) n 2 n (j) j n = n + 3 ( ) n n (k) k n = n + 1 ( ) n + 7 3n+1 (l) l n = n + 9 ( ) n + 1 n (m) m n = 2n + 5 (2 n ( 3 n (n) p n = 3) n + 4) (o) q n = ( n 2 n 2 1 ) 2n 2 +3 [1] [e 5 ] [e 1 ] [e 6 ] [0] [3/4] [e 2 ]
5 5 Zbieżność szeregów 1. Przedstawić w postaci ułamka liczby : 0, 77(7), 0, 3535(35), 0, 13232(32) [7/9, 35/99, 419/990] 2. Wypisać wzór na n-tą sumę częściową szeregów i obliczyć sumę szeregu nieskończonego: (a) S n = (b) S n = (c) S n = n 2 k=1 3 k n k=1 n k=1 ( 3 ) k 4 1 (2k 1)(2k + 1) 3. Zbadać zbieżność szeregów porównując je z szeregami postaci 1 n α (a) 1 n(n + 2), n + 2 2n 3 + 7, n 1 n (b) n 1 n 3 + 1, n + 1 n 2 + 1, 1 n2 + 2n [1] [ 3/7] [1/2] zb., zb., zb. zb., rozb., rozb. 4. Zbadać zbieżność szeregów. (a) n 1 (n + 1)( n + 2), 2n 2 + 3n + 4 n 5 + n 3 + 1, 1 n(n + 1)(n + 2) (b) 3 n n!, n! (2n)!, n(n + 1) (c) ( 3n + 1 2n + 1 ) n, n 5 n 2 n 3 n+1,, n 10 (d) ( 1) n+1 2n + 1, ( 1) n ( n 3 1), ( 1) n+1 n ln(n + 1), [rozb., zb., zb.] 2 n [zb., zb. zb.] 10 n [rozb., zb., zb.] [zb., zb., zb.]
6 6 Granica i ciągłość funkcji 1. Dla ustalonego ϵ > 0 dobrać, o ile to możliwe, liczbę δ > 0 tak aby z nierówności x x 0 < δ wynikało f(x) f(x 0 ) < ϵ. (a) f(x) = x 2, x 0 = 2, ϵ = 0, 01 (b) f(x) = 1/x, x 0 = 1/2, ϵ = 0, 1 (c) f(x) = sign(x), x 0 = 0, ϵ = 0, 1 2. Obliczyć granice funkcji: x 2 9 (a) lim x 3 x 3 ; lim x x 1 (b) lim x 0 x (c) lim x π/2 x 3 x + 2 x 3 + x 3 ; lim x 3 x + 6 x 2 x 3 4x x2 + 1 x + 2 ; ; lim x 1 sin x cos 2 x ; lim x π/2 lim x + [ 6 ; 2 ;11/8] x2 + 1 x + 2 [1/2,, 2] cos x π/2 x ; lim x 0 (1 + 2x)3/x ; [1/2 ; 1 ; e 6 ] 3. Czy dla funkcji f(x) można tak dobrać wartość w punkcie x 0 aby uzyskana funkcja była ciągła? (a) f : R \ {2} R, f(x) = x + 2 x 2 4, x 0 = 2 sin 3x (b) f : R \ {0} R, f(x) = 2x, x 0 = 0 1 (c) f : R \ {0} R, f(x) = 1 + 2, x 1/x 0 = 0
7 7 Pochodna 1. Wprost z definicji obliczyć pochodną funkcji (a) f(x) = x 2 w punkcie x 0 = 3 (b) f(x) = x 3 w punkcie x 0 = 2 (c) f(x) = 1 x w punkcie x 0 = Znaleźć styczną do wykresu funkcji f(x) = x w punkcie x 0 = Wyznaczyć wszystkie punkty dla których styczna do wykresu funkcji y = sin(x) jest równoległa do prostej y = x. 4. Pod jakim kątem wykres danej funkcji przecina oś Ox. (a) sin 3x ; tgx ; (b) ln x ; 1 e x ; 5. Obliczyć pochodne funkcji (a) 2x 3 + 5x 2 x + 7 ; x 3 ; x 3 / x (b) 3 sin x + 5 cos x ; x ln x ; x 2 e x (c) sin x/ x ; cos x/(1 + x 2 ) ; cos 2 (3x) ; (d) sin(x 2 + 4) ; tg 3 (x 2 + 1) ; x e x2. 6. Znaleźć dziedzinę przedziały wzrostu i malenia funkcji oraz jej extrema lokalne (a) f(x) = x e 3x ; e x /x ; f(x) = x 2 e x2 (b) x 2 10 ln x ; x/ ln x 7. Obliczyć przybliżoną wartość wyrażenia : (a) 3 26, 19 ; (b) ln(1, 05) ; (c) 4 16, 64 ; (d) 6, Znależć ekstrema lokalne (nie używając drugiej pochodnej) (a) 2x 3 2x 2, (b) x ln(1 + x), (c) (1 2x + x 2 )/2x, (d) (x 2 1)/x 9. Znależć ekstrema lokalne (stosując drugą pochodną) (a) x 3 2x 2 + x ; (b) x + 1 x, c) (ln x) 2 ln x 10. Znaleźć extrema oraz punkty przegięcia funkcji : (a) x 3 + x 2 ; (b) 2x/(x 2 + 1) ; (c) x 4 x Wyznaczyć przedziały wypukłości funkcji: (a) x 4 4x 3 + 4x 2 ; (b) x 4 e x ; (c)x ln x Odpowiedzi. Zad 3. x = 2kπ dla k Z Zad 4. arctan 3 dla x = 2kπ, arctan 3 dla x = (2k + 1)π ; π/4 ; π/4 ; π/4 Zad 5. (a) 6x x 1 ; 3/2 x ; 5/2 x 3/2 (b) 3 cos x 5 sin x ; ln x + 1 ; (x 2 + 2x)e x (c) x 1/2 cos x 1/2 x 3/2 sin x ; (sin x (1 + x 2 ) + cos x 2x)/(1 + x 2 ) 2 ; 3 sin(6x). (d) 2x cos(x 2 + 4) ; 6 tan 2 (x 2 + 1)/ cos(x 2 + 1) ; e x2 (1 2x 2 )
8 8 Zbadać przebieg zmienności funkcji oraz sporządzić ich wykresy. 1. f(x) = x x 1 2. f(x) = 3 4/x 4/x 2 3. f(x) = (x 1) 2 (x + 2) 4. f(x) = x3 x 1 5. f(x) = (x + 1)2 2x 6. f(x) = x 2 7. g(x) = x e 2x 8. h(x) = ln x x 9. k(x) = x 1 x 2 Odpowiedzi. 1. D = [0, 1) (1, ) ; asymptoty x = 1, y = 0;funkcja malejąca; wypukła w (0, 1 2/ 3), (1, ) wklęsła w (1 2/ 3, 1) 2. D = R \ 0; asymptoty y = 3, x = 0; maleje w ( 2, 0) rośnie w (, 2) i (0, ); wypukła w (, 2) wklęsła w ( 2, 0) i (0, ). 3. D = R ; brak asymptot ; rośnie w (, 1) i (1, ), maleje w (0, 1) ; wypukła w (0, ), wklęsła w (, 0). 4. D = R \ {1} ; asymptota x = 1 ; maleje w (, 1) i w (1, 3/2), rośnie w (3/2, ) ; wypukła w (, 0) i (1, ), wklęsła w (0, 1). 5. D = R \ {0} ; asymptota y = x/2 + 1 ; rośnie w (, 1) i (1, ), maleje w ( 1, 0) i (0, 1), wypykła dla w (0, ) wklęsła w (, 0).
9 9 Szereg Taylora 1. Znależć trzy pierwsze wyrazy rozwinięcia funkcji tgx w szereg Taylora w punkcie Podać wzór Taylora dla danej funkcji, w punkcie x 0 oraz liczby n (a) f(x) = e x, x 0 = 0 ; n = 5, (b) g(x) = cos x, x 0 = π ; n = 6, (c) h(x) = 1, x 0 = 1 ; n = 3, x (d) k(x) = ln(1 + x), x 0 = 0 ; n = 5, 3. Jaki błąd popełniamy zastępując: (a) sin x = x x 3 /3! + x 5 /5! dla x 1 [1/7! 1, ] (b) cos x = 1 x 2 /2! + x 4 /4! x 6 /6! dla x 1/2 [1/(8! 2 8 ) 9, ] (c) ln(1 + x) = x x 2 /2 + x 3 /3 x 4 /4 dla x 0.1 [1/( )] 4. Obliczyć (a) e z dokładnością do 10 7 [2, ] (b) 10 z dokładnością do 10 3 (c) z dokładnością do 10 3 [3,162] [1,369] (d) 3 e z dokładnością do 10 3 [2, ] (e) ln 1, 3 z dokładnością do 10 3 [0,262]
10 10 Całka 1. Znaleźć funkcje pierwotne i sprawdzi wynik poprzez różniczkowanie: (a) (x 2 3x + 4)dx ; (x 3 + x)dx ; xdx ; 2 3 xdx ; 2 3 xdx ; (b) (7x + 2) 4 dx ; sin(4x)dx ; 3x(x 2 + 4) 4 dx ; x x 2 + 1dx ; (7x + 2) 4 dx ; (c) x e x dx ; x e 2x dx ; x sin 3xdx ; x e x dx ; x ln xdx ; x 2 e x dx (d) 2dx x ; 2. Obliczyć pole : (5x + 3)dx x 2 9 ; xdx x 2 6x + 10 ; 2dx x ; xdx x 2 + 2x + 8 ; x 2 dx x + 1 x x dx ; (a) powierzchni zawartej między liniami y = x 3, y = 4x [8] (b) powierzchni zawartej między liniami y = 2x 3, y 4 = 4x [5/6] (c) ograniczone parabolami y 2 = 8x, x 2 = 8y [64/3] (d) obszaru ograniczonego przez linie y = x 2, y = x 2 /2, y = 3x, [27/2] (e) obszaru ograniczonego przez linie y = 2x x 2, x + y = 0, [9/2] 3. Obliczyć objętość bryły ograniczonej przez powierzchnię powstała przez obrót paraboli x = y 2 wokół osi Ox oraz pląszczyznę x = a [πa 5 /5] 4. Obliczyć objętość bryły powstałej przez obrót sinusoidy y = sin x (0 x π) wokół osi Ox [π 2 /2] 5. Obliczyć objętość bryły powstałej przez obrót hiperboli y = 1/x (1 x < ) wokół osi Ox oraz płaszczyznę x = 1 [π]
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA1, lista zadań 1
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA, studia niestacjonarne ANALIZA MATEMATYCZNA, lista zadań. Dla podanych ciągów napisać wzory określające wskazane wyrazy tych ciągów: a) a n = n 3n +, a n+, b) b n = 3
ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),
ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Rachunek różniczkowy i całkowy 2016/17
Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
Analiza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Analiza Matematyczna. Lista zadań 10
Analiza Matematyczna Lista zadań 10 Zadanie 1 pole figury ograniczonej krzywymi y 2 = 2x, x + y = 1. Zadanie 2 objȩtość bryły V powstałej z obrotu wokół osi Ox powierzchni ograniczonej krzyw a o równaniu
Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n
V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n
Lista 1 - Funkcje elementarne
Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Pochodna funkcji jednej zmiennej
Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )
2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.
2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange
Opracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Analiza Matematyczna Ćwiczenia
Analiza Matematyczna Ćwiczenia Spis treści Ciągi i ich własności Granica ciągu Granica funkcji 4 4 Ciągłość funkcji 6 Szeregi 8 6 Pochodna funkcji 7 Zastosowania pochodnej funkcji 8 Badanie przebiegu zmienności
Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.
Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika
Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza
Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =
Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Analiza Matematyczna I
Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
WYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:
Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU
Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a
Funkcje Andrzej Musielak 1. Funkcje
Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie
Pochodne funkcji wraz z zastosowaniami - teoria
Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Rachunek różniczkowy funkcji jednej zmiennej. 1 Obliczanie pochodnej i jej interpretacja geometryczna
Wydział Matematyki Stosowanej Zestaw zadań nr 4 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 4 grudnia 08r. Rachunek różniczkowy funkcji jednej zmiennej Obliczanie pochodnej
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy
Materiały do ćwiczeń z matematyki. 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej
Materiały do ćwiczeń z matematyki Kierunek: chemia Specjalność: podstawowa 3 Rachunek różniczkowy funkcji rzeczywistych jednej zmiennej 3.1 Podstawowe wzory i metody różniczkowania Definicja. Niech funkcja
Analiza matematyczna 1 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki Spis treści I Elementy logiki, zbiory, funkcje 3 Zadania................................ 3....................... 4 II Funkcje trygonometryczne
ANALIZA MATEMATYCZNA I
ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co dwa tygodnie. Zadania po symbolu potrójne karo omawiane są na ćwiczeniach rzadko, ale warto też poświęcić im nieco uwagi. Lista nie zawiera
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA 1 Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA 1 Kolokwia i egzaminy Wydanie siedemnaste zmienione GiS Oficyna Wydawnicza GiS Wrocław 2018 Marian Gewert Wydział Matematyki
f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x
Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =
LISTA 0 (materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych
LISTA 0 materiał do samodzielnego powtórzenia). Działania w zbiorze liczb rzeczywistych W zadaniach 0. 0.5 n N, natomiast a, b,, y są liczbami rzeczywistymi, dla których występujące w zadaniach wyrażenia
ANALIZA MATEMATYCZNA I
ANALIZA MATEMATYCZNA I Lista zadań dla kursów mających ćwiczenia co tydzień Choć zadania po symbolu potrójne karo nie są typowe, warto też poświęcić im nieco uwagi Lista nie zawiera odpowiedzi, ale poprawność
LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA 1 (MAT 1637, 1644)
LISTY ZADAŃ DO KURSU ANALIZA MATEMATYCZNA MAT 67, 644) Zadania przeznaczone są do rozwiązywania na ćwiczeniach oraz samodzielnie. Dwie dodatkowe listy: POWTÓRKA i POWTÓRKA to przygotowanie do kolokwiów.
FUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji
Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )
Lista 0 wstęp do matematyki
dr Karol Selwat Matematyka dla studentów kierunku Ochrona Środowiska, 2-2 Lista wstęp do matematyki.. Sprawdź, czy następujące zdania logiczne są tautologiami: p q) p q) p q) p q) p q) q p) d)[p q) p]
(5) f(x) = ln x + x 3, (6) f(x) = 1 x. (19) f(x) = x3 +2x
. Zadania do samodzielnego rozwiązania Zadanie. Na podstawie definicji pochodnej funkcji w punkcie obliczyć pochodną funkcji f zdefiniowanej równością () cos (2) (3) ln (4) sin 2 (5) ln + 3 (6) cos(3 )
Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.
Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Marian Gewert Zbigniew Skoczylas ANALIZA MATEMATYCZNA Kolokwia i egzaminy Wydanie szesnaste uzupełnione GiS Oficyna Wydawnicza GiS Wrocław 204 Marian Gewert Instytut Matematyki i Informatyki
Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Funkcje elementarne. Matematyka 1
Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Wykład 5. Zagadnienia omawiane na wykładzie w dniu r
Wykład 5. Zagadnienia omawiane na wykładzie w dniu 14.11.2018r Definicja (iloraz różnicowy) Niech x 0 R oraz niech funkcja f będzie określona przynajmnniej na otoczeniu O(x 0 ). Ilorazem różnicowym funkcji
1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 3, 2018/19z (zadania na ćwiczenia)
Analiza Matematyczna F dla Fizyków na WPPT Lista zadań 3 08/9z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert Z. Skoczylas Analiza Matematyczna. Przykłady i zadania GiS 008) 3 Granica funkcji
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
sin x 1+cos 2x. 3. Znajd¹ okres podstawowy funkcji: 6) f(x) = cos(4πx + 2), 8) f(x) = cos 2 x, 9) f(x) = tg πx 4) f 1 ([1, 9]), 5) f ([ 1, 1]),
WBiA In»ynieria rodowiska Matematyka wiczenia. Wyja±nij poj cia: funkcja dziedzina dziedzina naturalna przeciwdziedzina zbiór warto±ci iniekcja suriekcja bijekcja funkcja nie)rosn ca nie)malej ca wkl sªa
Zadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
ANALIZA MATEMATYCZNA 1
ANALIZA MATEMATYCZNA Maciej Burnecki strona główna Spis treści I Zadania Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy 5 6 Całki
Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28
Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna
MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego
1 Funkcje elementarne
1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Zadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.
I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na
Matematyka i Statystyka w Finansach. Rachunek Różniczkowy
Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)
22 Pochodna funkcji definicja
22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica
1 Układy równań liniowych
1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +
ANALIZA MATEMATYCZNA 2.2B (2017/18)
ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać
Wykład 11 i 12. Informatyka Stosowana. 9 stycznia Informatyka Stosowana Wykład 11 i 12 9 stycznia / 39
Wykład 11 i 12 Informatyka Stosowana 9 stycznia 2017 Informatyka Stosowana Wykład 11 i 12 9 stycznia 2017 1 / 39 Twierdzenie Lagrange a Jeżeli funkcja f spełnia warunki: 1 jest ciagła na [a, b] 2 f istnieje
Matematyka Lista 1 1. Matematyka. Lista Obliczyć lub uprościć zapis (zapisać jako potęgę):
Matematyka Lista 1 1 Matematyka Lista 1 1. Obliczyć lub uprościć zapis (zapisać jako potęgę): 3 3 3 ( ) 1 4 2 5 8 3 100 3 2 4 1 3 4 2 4 9 1 3 3 9 3. 5 2. Rozwiązać równania i nierówności: 4 2x+1 = 8 5x
Lista 2 - Granica. 2n d) dn = ( 1 1 ) n 2. 2n+1 n; 1+x
Lista - Logika. Każde z poniższych twierdzeń wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.
ANALIZA MATEMATYCZNA 1 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 3 4 Granice funkcji, ciągłość 4 5 Rachunek różniczkowy
WSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).
MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
Ćwiczenia 4 / 5 rachunek różniczkowy
Matematyka dla Ciekawych Świata, 2012/2013 13 listopada 2012 Ćwiczenia 4 / 5 rachunek różniczkowy 0. Kangur powraca Przypomnij sobie, że nasz kangur porusza się z prędkością 4 km/h. Zamodeluj ruch kangura
Egzamin z matematyki dla I roku Biochemii i Biotechnologii
Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28
Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem
Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław
Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
Wykład 11. Informatyka Stosowana. Magdalena Alama-Bućko. 18 grudnia Magdalena Alama-Bućko Wykład grudnia / 22
Wykład 11 Informatyka Stosowana Magdalena Alama-Bućko 18 grudnia 2017 Magdalena Alama-Bućko Wykład 11 18 grudnia 2017 1 / 22 Twierdzenie Granica lim f (x) x x 0 istnieje i wynosi a wtedy i tylko wtedy,
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Wykresy i własności funkcji
Wykresy i własności funkcji Zad : (profil matematyczno-fizyczny) a) Wykres funkcji f(x) = x 6x + bx + c przechodzi przez punkt P = (, ), a współczynnik kierunkowy stycznej do wykresu tej funkcji w punkcie
MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe
MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.
Wykłady z matematyki - Pochodna funkcji i jej zastosowania
Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.
Analiza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Repetytorium. Zajęcia w semestrze zimowym 2012/2013. Ewa Cygan
Repetytorium Zajęcia w semestrze zimowym 01/013 Ewa Cygan Wersja z 15 stycznia 013 Zestawy zadań na kolejne ćwiczenia Na najbliższe zajęcia (11.10.) proszę o rozwiązanie (bądź powtórzenie sobie rozwiązań
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
Zestaw zadań przygotowujących do egzaminu z Matematyki 1
Uniwersytet Ekonomiczny w Katowicach Wydział Finansów i Ubezpieczeń, Kierunek: Finanse i Zarządzanie w Ochronie Zdrowia Zestaw zadań przygotowujących do egzaminu z Matematyki 1 Powtórka materiału przed
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5