EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

Podobne dokumenty
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

Matematyka ubezpieczeń majątkowych r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Funkcja generująca rozkład (p-two)

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

METODY NUMERYCZNE dr inż. Mirosław Dziewoński

PROGNOZY I SYMULACJE

Statystyka opisowa. () Statystyka opisowa 24 maja / 8

θx θ 1, dla 0 < x < 1, 0, poza tym,

MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń

Sygnały pojęcie i klasyfikacja, metody opisu.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

ANALIZA KORELACJI IREGRESJILINIOWEJ

Prawdopodobieństwo i statystyka r.

TRANZYSTORY POLOWE JFET I MOSFET

Statystyka matematyczna. Wykład II. Estymacja punktowa

Pobieranie próby. Rozkład χ 2

licencjat Pytania teoretyczne:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)

Prawdopodobieństwo i statystyka r.

Twierdzenia graniczne:

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

SZACOWANIE KOSZTÓW PROCESU MONTAŻU NA PRZYKŁADZIE WYBRANEGO TYPOSZEREGU WYROBÓW

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Matematyka ubezpieczeń majątkowych r.

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Definicja interpolacji

Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej

Estymatory nieobciążone o minimalnej wariancji

Statystyka Inżynierska

STATYSTYKA MATEMATYCZNA

1 Twierdzenia o granicznym przejściu pod znakiem całki

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

Zeszyty naukowe nr 9

Bezrobocie. wysiłek. krzywa wysiłku pracownika E * płaca realna. w/p *

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

ZADANIA NA ĆWICZENIA 3 I 4

STATYSTYKA OPISOWA PODSTAWOWE WZORY

Planowanie doświadczeń - DPLD LMO Materiały pomocnicze

PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).

KADD Metoda najmniejszych kwadratów

Podprzestrzenie macierzowe

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

STATYSTYKA OPISOWA PODSTAWOWE WZORY

16 Przedziały ufności

Identyfikacja i modelowanie struktur i procesów biologicznych

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 6. Badanie dynamiki zjawisk

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Wygładzanie metodą średnich ruchomych w procesach stałych

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Lista 6. Estymacja punktowa

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

STATYSTYKA MATEMATYCZNA

Statystyka Matematyczna Anna Janicka

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.

OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

KURS EKONOMETRIA. Lekcja 1 Wprowadzenie do modelowania ekonometrycznego ZADANIE DOMOWE. Strona 1

Zasada indukcji matematycznej. Dowody indukcyjne.

Twierdzenie Cayleya-Hamiltona

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego

Wyznaczyć prędkości punktów A i B

Internetowe Kółko Matematyczne 2004/2005

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Pojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby.

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

Transkrypt:

EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/ el.: -66-45-54-8 Pla wykładu Klasyczy model regresji liiowej przypadek jedej zmieej objaśiającej. Założeia schemau Gaussa-Markowa Meoda ajmiejszych kwadraów. Przykład esymacji paramerów modelu Z.Tarapaa, Ekoomeria, wykład r 3

Model ekoomeryczy - przypomieie Szukamy związku zmieej objaśiaej Y objaśiających X i, i,...,m, w chwili. Szukamy zaem związku f posaci: Z.Tarapaa, Ekoomeria, wykład r 3 Y f ( X, X,..., X m z warościami zmieych Będziemy zakładać, że związek e jes liiowy, zaem ieresować as będzie asępująca zależość (dla jedej zmieej objaśiającej z. gdy m: gdzie ξ Y + αx α + ξ obrazuje am losowe odkszałceie modelu liiowego. Jeżeli X oraz Y są zmieymi losowymi (ak przyjmujemy w modelowaiu ekoomeryczym, o wedy zależość (* osi azwę zw. rówaia regresji. (* 3 Liiowy model regresji - wprowadzeie Procedura ekoomerycza: Specyfikacja zmieych Kosrukcja modelu Esymacja paramerów Weryfikacja modelu Zasosowaie modelu Szukamy odpowiedzi a pyaia: Co o jes regresja? Co o jes prosa regresji? Co o jes liia regresji? Czym różi się liia regresji I rodzaju od liii regresji II rodzaju? Z.Tarapaa, Ekoomeria, wykład r 3 4

Liiowy model regresji - wprowadzeie Twierdzeie. Współczyik korelacji zmieych losowych X i Y spełia waruek: ρ XY ρ XY Z.Tarapaa, Ekoomeria, wykład r 3 s ała a, bp( Y ax + b ( gdzie ozacza współczyik korelacji między zmieymi X i Y (ozaczay rówież przez r XY. Ierpreacja: dla prawie wszyskich zdarzeń elemearych zmieą losową Y moża przedsawić jako fukcję liiową zmieej losowej X. 5 Co o jes regresja? Jeżeli składowe wekora (X,Y spełiają waruek (, o prosą: yax+b azywamy prosą regresji Saje się oa liią regresji pierwszego rodzaju liia regresji zmieej losowej Y względem X: yh(xe(y/xx, Liia regresji zmieej losowej X względem Y: xg(ye(x/yy Jeżeli liiami są prose, o h(exey, g(eyex Z.Tarapaa, Ekoomeria, wykład r 3 6

Co o jes regresja? Jeżeli ρ, o zaczy ie zachodzi rówość: P(YaX+b i wedy liia regresji pierwszego rodzaju ie jes prosą. Szukamy akiej fukcji liiowej, aby prawdopodobieńswo P(YaX+b było możliwie duże. Przyjmuje się kryerium: oczekiway kwadraowy błąd aproksymacji: ee[(y-ax-b ] Warości a i b, dla kórych e jes miimale wyzaczają prosą regresji II rodzaju. Jeśli ρ, o liie regresji I i II rodzaju pokrywają się. Z.Tarapaa, Ekoomeria, wykład r 3 7 Założeia schemau regresji (Gaussa-Markowa Założeie. Model jes iezmieiczy względem obserwacji f f... f Czyli wzór ( moża zapisać: y,..., f ( x, ξ f ( x, ξ, f Założeie. Model jes liiowy względem paramerów Z.Tarapaa, Ekoomeria, wykład r 3 y α + αx + ξ,,..., 8

Założeia schemau regresji (Gaussa-Markowa, c.d. Założeie3. Zmiea objaśiająca jes ielosowa, jej warości są usaloymi liczbami rzeczywisymi waruek ideyfikacji : E{ Y D { Y X } E{ Y } X } D { Y } Założeie4. Składik losowy ma rozkład ormaly: ξ : N( µ ξ, σ Z.Tarapaa, Ekoomeria, wykład r 3 9 Założeia schemau regresji (Gaussa-Markowa, c.d. Założeie5. Wysępujące zakłóceia, kóre reprezeuje składik losowy maja edecję do wzajemej redukcji: Eξ Założeie6. Składik losowy jes sferyczy: ie wysępuje auokorelacja składika losowego Cov( ξ, ξτ, τ składik losowy jes homoskedasyczy D ξ σ Z.Tarapaa, Ekoomeria, wykład r 3

Założeia schemau regresji (Gaussa-Markowa, c.d. Założeie7. Iformacje zaware w próbie są jedyymi iformacjami, a podsawie kórych dokouje się esymacji paramerów modelu (. Powyższe założeia defiiują zw. sadardowy model liiowy Z.Tarapaa, Ekoomeria, wykład r 3 Meoda ajmiejszych kwadraów (MNK, KMNK Rozważamy model ( i spełioe są założeia 3-7 schemau Gaussa-Markowa; Warość oczekiwaa zmieej objaśiaej rówa jes zaem: E( Y α + αx (3 Powyższe rówaie wyzacza liię regresji populacji geeralej; Paramery α, α są iezae i podlegają oszacowaiu a podsawie próby saysyczej - orzymamy liię regresji próby: ˆ ˆ ˆ y α + αx Z.Tarapaa, Ekoomeria, wykład r 3

Meoda ajmiejszych kwadraów (MNK, KMNK Esymaory ˆ są fukcjami zmieych losowych Y ; Różice e azywamy reszami Y yˆ modelu; Mamy 4 fukcje: - liia regresji populacji geeralej LRPG; - liia regresji próby LRP; -warości empirycze (populacja geerala WEPG; -warości empirycze (próba WEP; Z.Tarapaa, Ekoomeria, wykład r 3 ˆ α, α 3 Meoda ajmiejszych kwadraów (MNK, KMNK LRPG LRP WEPG WEP EY ˆ α + α x ˆ ˆ y α + αx Y + αx α + ξ y ˆ α + α x + e ˆ WEPGWEP Z.Tarapaa, Ekoomeria, wykład r 3 4

Meoda ajmiejszych kwadraów (MNK, KMNK MNK Reszy e moża rakować jako realizacje składika losowego; Zadaie esymacji paramerów α,α jes rówoważe esymacji warości oczekiwaej zmieej objaśiaej a podsawie daych empiryczych ; Szukamy liii, kóra jes ajlepsza z puku widzeia sumy kwadraów resz e (mi. Z.Tarapaa, Ekoomeria, wykład r 3 ( e mi 5 Meoda ajmiejszych kwadraów (MNK, KMNK Ierpreacja graficza y Y + αx α + ξ ξ EY α x + α e yˆ ˆ α + ˆ α x x x Z.Tarapaa, Ekoomeria, wykład r 3 6

y 4 y ( Meoda ajmiejszych kwadraów (MNK, KMNK Ierpreacja graficza 7 e mi y 4 e 4 Kryerium doboru paramerów modelu-współczyików prosej y 5 y 6 y 7 y e ŷ ŷ 7 6 y ŷ 5 ŷ ŷ ŷ ŷ 3 4 yˆ ˆ α + ˆ α x x x x 3 x 4 x 5 x 6 x 7 x Z.Tarapaa, Ekoomeria, wykład r 3 7 Meoda ajmiejszych kwadraów (MNK, KMNK Oszacowaie paramerów modelu e e ˆ α e ˆ α mi ( y ( y Defiicja problemu (Kryerium doboru paramerów ˆ α ˆ α x ˆ α ˆ α ˆ α x ˆ α, Sposób rozwiązaia problemu Z.Tarapaa, Ekoomeria, wykład r 3 8

Meoda ajmiejszych kwadraów (MNK, KMNK Oszacowaie paramerów modelu Rozwiązując układ rówań przedsawioy a poprzedim slajdzie orzymujemy: ˆ α ( x x( y ( x x y ˆ α ˆ y α x Z.Tarapaa, Ekoomeria, wykład r 3 9 Liiowy model ekoomeryczy z jedą zmieą objaśiającą Przykład Przykład Weźmy pod uwagę asępujący model: y + α x α + ζ gdzie: y kosz produkcji pewego wyrobu w chwili ; x wielkość produkcji w chwili ; Warości zmieych w kolejych -ciu laach przedsawia abela. Oszacować paramery modelu a podsawie daych hisoryczych. y x,4,7,5 3,5 4,5 5, 6,3,5 7,5 8,8 3 9,6 3,9 3,5 Z.Tarapaa, Ekoomeria, wykład r 3

Liiowy model ekoomeryczy z jedą zmieą objaśiającą Przykład, c.d. y x y y x x ( x x ( x x ( y y,4 -,79 -,,,869,7,5 -,49 -,6,36,94 3,5 -,69 -,,,759 4,5 -,9 -,6,36,4 5,, -,, -, 6,3,5,,4,6,44 7,5,3 -,, -,3 8,8 3,6,9,8,549 9,6 3,4,9,8,369,9 3,5,7,4,96,994 y.9 x. suma 6,9 3,96 ˆ α ( x Z.Tarapaa, Ekoomeria, wykład r 3 x( y y 3,96 6,9 ( x x,57 ˆ α ˆ y α x,9,57,,99 Zaem: yˆ,99 +, 57 x Liiowy model ekoomeryczy z jedą zmieą objaśiającą Przykład, c.d. Y 3,5 3,5,5,5,4 Wykres zależości między X a Y,7 y,5739x +,9848 R,8987,5,,3,8,6,9,5,5,5 3 3,5 4 dae z próby X Liiowy (dae z próby Z.Tarapaa, Ekoomeria, wykład r 3

Liiowy model ekoomeryczy z jedą zmieą objaśiającą Szacowaie sopia dopasowaia modelu do daych z próby (współczyik R Aby oszacować sopień dopasowaia modelu regresji do daych z próby wyzacza się zw. współczyik deermiacji R, kóry przyjmuje warości z przedziału (, (im R bliższe ym model lepiej dopasoway do próby: R ( y yˆ ( y y Z.Tarapaa, Ekoomeria, wykład r 3 3 Liiowy model ekoomeryczy z jedą zmieą objaśiającą Szacowaie sopia dopasowaia modelu do daych z próby (współczyik R - przykład y x ŷ y y e y yˆ ( y y e ( y yˆ,4,56 -,79 -,6,64,56,7,5,845 -,49 -,45,4,5 3,5,56 -,69 -,6,476,36 4,5,845 -,9,55,36,45 5,,3,,7,,49 6,3,5,45, -,5,,35 7,5,3,3,37,96,369 8,8 3,7,6,,37, 9,6 3,7,4 -,,68,,9 3,5,985,7 -,85,54,75 y.9 suma,59,565 R ( y yˆ ( y y Z.Tarapaa, Ekoomeria, wykład r 3,565,9,59 Model bardzo dobrze dopasoway do daych, bo R,9 4