Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
|
|
- Dominika Czerwińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla daych idywidualych d d 1 D = x ld + h d d d 1 d+1 gdzie d umer ajlicziejszego przedziału x ld lewy koiec d-tego przedziału h d długość d-tego przedziału Mediaa i kwartyle Dla daych idywidualych x +1/ dla ieparzystego x /+x /+1 dla parzystego Pierwszy kwartyl Q 1 : jeśli 4 jest liczbą całkowitą to Q 1 = x /4 jeśli k < 4 < k + 1 to Q 1 = x k+x k+1 Miary rozproszeia Wariacja Dla daych idywidualych: s = 1 x i x s = 1 i ẋ i x gdzie ẋ i - środek i-tego przedziału Rówie często w literaturze wariację defiiuje się dzieląc przez 1 zamiast przez Odchyleie stadardowe: s = s Odchyleie przecięte od średiej: Dla daych idywidualych: d = 1 x i x d = 1 i ẋ i x gdzie ẋ i - środek i-tego przedziału Typowy klasyczy obszar zmieości x s x x + s Trzeci kwartyl Q 3 : jeśli 3 4 jest liczbą całkowitą to Q 1 = x 3/4 jeśli k < 3 4 < k + 1 to Q 1 = x k+x k+1 Rozstęp R = x max x mi Są też w użyciu ie wzory a kwartyle dla szeregu idywidualego Kwartyle dla szeregów idywidualych stosuje się rzadko! Q i = x lmi + i mi 1 4 j h m i mi gdzie m i umer grupy zawierającej daą o umerze i 4 ; m i 1 suma liczebości od pierwszego przedziału klasowego do przedziału poprzedzającego przedział kwartyla; mi liczebość przedziału w którym zajduje się kwartyl Dla i = 1 otrzymujemy kwartyl Q 1 dla i = kwartyla Q czyli mediaę dla i = 3 kwartyl Q 3 Odchyleie ćwiartkowe Q = Q 3 Q 1 Typowy pozycyjy obszar zmieości M Q x M + Q Współczyik zmieości klasyczy V x = s x Współczyik zmieości pozycyjy V x = Q M 1
2 Momet cetraly rzędu l Dla daych idywidualych M l = 1 M l = x i x l i ẋ i x l Klasyczy współczyik asymetrii A x = M 3 s 3 Współczyik skośości asymetrii A s = x D s Pozycyjy współczyik asymetrii Kurtoza A p = Q 3 + Q 1 M Q K = M 4 s 4 DYNAMIKA ZJAWISK Ideksy jedopodstawowe o podstawie y 0 Agregatowy ideks ce Laspeyresa I L p = q i0 p i1 Agregatowy ideks ilości Paaschego I P q = q i0 p i1 Agregatowy ideks ce Paaschego I P p = q i1 p i0 Agregatowy ideks ilości Fishera Iq F = Iq L Iq P Agregatowy ideks ce Fishera Ip F = Ip L Ip P p i0 cea i-tego produktu w okresie podstawowym p i1 cea i-tego produktu w okresie badaym q i0 produkcja i-tego produktu w okresie podstawowym q i1 produkcja i-tego produktu w okresie badaym J P i = y i y 0 Ideksy łańcuchowe J L i = y i y i 1 Agregatowy ideks wartości I w = Agregatowy ideks ilości Laspeyresa I L q = q i1 p i0
3 Aaliza szeregów czasowych Metoda mechaicza Day jest ciąg y t t = 1 t czas dyskrety Średie ruchome - ieparzysta liczba p podokresów ŷ k = 1 p y k p y k+ p 1 k = p + 1 p 1 błędy średie szacuku Da = t t Db = t t t - parzysta liczba podokresów ŷ k = 1 p 1 y k p + y k p y k+ p y k+ p k = p + 1 p Metoda aalitycza liiowa fukcja tredu wyzaczoa metodą ajmiejszych kwadratów gdzie t = 1 a = ŷ t = at + b t ty t t t b = y at t = + 1 y = 1 y t Odchyleie stadardowe składika losowego y t ŷ t = współczyik zmieości losowej współczyik zgodości v u = y 100% φ = y t ŷ t y t y współczyik determiacji R = 1 φ Model uważa się za dopuszczaly jeśli φ < 0 Ocey parametrów uzajemy za precyzyje jeśli a Da > Wahaia sezoowe b Db > Day jest ciąg y t t = 1 = d m gdzie m - liczba okresów d - liczba sezoów w każdym okresie Krok 1 Wyliczamy ŷ t metodą średich ruchomych albo aalityczą przy średich ruchomych brakuje kilku skrajych daych Niech N j j = 1 d ozacza zbiór zawierający wskaźiki dotyczące j-tego sezou oraz p j liczość zbioru N j Zwykle N j = {mj mj 1 + mj} - wtedy p j = d; przy średich ruchomych zbiory N 1 oraz N m są pomiejszoe o skraje liczby i p 1 oraz p m są miejsze Krok Wyliczamy Krok 3 Liczymy średie S t = y t ŷ t S s j = 1 S i j = 1 d p j i N j zwae surowymi wskaźikami sezoowości Krok 4 opcjoaly Liczymy oczyszczoe wskaźiki sezoowości: gdzie k = 1 m d S s j S o j = Ss j k Współzależość zjawisk Tablica korelacyja y j x i y 1 y y l i x l 1 x 1 l x k k1 k kl k j 1 l 3
4 x i - wartości pierwszej cechy y j - wartości drugiej cechy ij - liczość zbioru z warością cechy pierwszej x i i drugiej y j i = j = = l ip p=1 k pj p=1 l ij Cechy mierzale s x = 1 x = 1 x i i y = 1 x j j x i x i s y = 1 Kowariacja Cxy = Cyx = 1 Współczyik korelacji r xy = r yx = x j = 1 j y i = 1 i s jx = 1 j y j y j x i y j ij xy Cxy SxSy x i ij x j ij j=l x i x j ij χ = ij ij i j Współczyik kotygecji C xy χ C xy = χ + Współczyik Czuprowa T xy T xy = χ k 1l 1 Model korelacji i regresji liiowej dwóch zmieych: Współczyik korelacji rag Spearmaa Numerujemy dae x i oraz y i wg kolejości rosącej p odpowiedio liczbami a i oraz b i Wtedy s x = 1 Rxy = Ryx = 1 x = 1 ŷx = ax + b x i y = 1 Cxy = 1 6 a i b i 1 y i x i xy i y x i x s y = 1 r xy = r yx = Cxy sxsy y i y s i y = 1 i y j x i ij Dla cechy ciągłej zastępujemy wartości x i y i środkami przedziałów klasowych Cechy iemierzale x i i y j są wtedy pewymi charakterystykami własościami Defiiujemy: a = Cxy s x b = y ax ŷ i = yx i Odchyleie stadardowe składika losowego 4
5 y i ŷ i = Współczyik zgodości φ = y i ŷ i y i y Współczyik determiacji R = 1 φ Błędy średie szacuku parametrów fukcji regresji Da = x i x Db = x i x i x Uzaje się że parametry są oszacowae precyzyjie jeśli a Da > oraz Progoza i błąd progozy przy czym b Db > yx = ax + b ± Sy Sy = x x + x i x 5
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara
Wybrane litery alfabetu greckiego
Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i
Statystyczny opis danych - parametry
Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea
Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Histogram: Dystrybuanta:
Zadaie. Szereg rozdzielczy (przyjmujemy przedziały klasowe o długości 0): x0 xi i środek i*środek i_sk częstości częstości skumulowae 5 5 8 0 60 8 0,6 0,6 5 5 9 0 70 7 0,8 0, 5 5 5 0 600 0, 0,6 5 55 8
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Statystyka powtórzenie (I semestr) Rafał M. Frąk
Statystyka powtórzeie (I semestr) Rafał M. Frąk TEORIA Statystyka Statystyka zajmuje się badaiem procesu zbieraia oraz iterpretacji daych liczbowych lub jakościowych. Przedmiotem statystyki są metody badaia
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Podstawowe pojęcia. Próba losowa. Badanie próby losowej
METODY PROBABILISTYCZNE I STATYSTYKA WYKŁAD 8: STATYSTYKA OPISOWA. ROZKŁADY PRAWDOPODOBIEŃSTWA WYSTĘPUJĄCE W STATYSTYCE. Małgorzata Krętowska Wydział Iforatyki Politechika Białostocka Podstawowe pojęcia
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Materiały do wykładu 4 ze Statystyki
Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Projekt ze statystyki
Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...
Wykład nr 2. Statystyka opisowa część 2. Plan wykładu
Wykład r 2 Statystyka opisowa część 2 Pla wykładu 1. Uwagi wstępe 2. Miary tedecji cetralej 2.1. Wartości średie 2.2. Miary pozycyje 2.3. Domiata 3. Miary rozproszeia 4. Miary asymetrii 5. Miary kocetracji
1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr inż Krzysztof Bryś
1 STATYSTYKA OPISOWA I PROJEKTOWANIE EKSPERYMENTU dr iż Krzysztof Bryś Pojȩcia wstȩpe populacja - ca ly zbiór badaych przedmiotów lub wartości. próba - skończoy podzbiór populacji podlegaj acy badaiu.
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Statystyka Opisowa. w2: podstawowe miary. Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska. Poznań, 2015/16 aktualizacja 2017
Statystyka Opisowa w2: podstawowe miary Jerzy Stefaowski Istytut Iformatyki Politechika Pozańska Pozań, 205/6 aktualizacja 207 STATYSTYKA OPISOWA Techiki wstępej aalizy daych i ich prezetacji: gromadzeie,
Statystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Kurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
BADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych.
STATYSTYKA to auka, której przedmiotem zaiteresowaia są metody pozyskiwaia i prezetacji, a przede wszystkim aalizy daych opisujących zjawiska masowe. Metody statystycze oparte są a rachuku prawdopodobieństwa.
ANALIZA KORELACJI IREGRESJILINIOWEJ
ANALIZA KORELACJI IREGRESJILINIOWEJ 1. ZALEŻNOŚCI STOCHASTYCZNE Badajac zjawiska o charakterze masowym, w tym szczególie zjawiska spo leczo-ekoomicze, stwierdzamy, że każde z ich jest uwarukowae dzia laiem
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.
Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych
Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Statystyka i rachunek prawdopodobieństwa
Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg
Statystyka i opracowanie danych W3: Wprowadzenie do statystycznej analizy danych Podstawy wnioskowania statystycznego. Estymacja i estymatory
Statystyka i opracowaie daych W3: Wprowadzeie do statystyczej aalizy daych Podstawy wioskowaia statystyczego. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Wprowadzeie Podstawowe cele
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Modelowanie i Analiza Danych Przestrzennych
Modelowaie i Aaliza Daych Przestrzeych Wykład 3 Adrzej Leśiak Katedra Geoiformatyki i Iformatyki Stosowaej Akademia Góriczo-Huticza w Krakowie Wstęp do statystyki W statystyce pod pojęciem populacji rozumiemy
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
Analiza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
INFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizyczej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczy, błąd przypadkowy,
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Statystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36
Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Statystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40
Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr
SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
14. RACHUNEK BŁĘDÓW *
4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
Parametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Ekonometria Mirosław Wójciak
Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Obserwacje odstające mają duży wpływ na średnią średnia nie jest odporna.
Wykład 8. Przedziały ufości dla średiej Średia a mediaa Mediaa dzieli powierzchię histogramu a połowy. Jest odpora ie mają a ią wpływu obserwacje odstające. Obserwacje odstające mają duży wpływ a średią
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.