P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
|
|
- Helena Czech
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch Markowa X, X,..., a przestrzei staów {,, } o macierzy przejścia P =, gdzie P i,j = P(X + = j X = i) dla i, j =,,. Załóżmy, że rozkład początkowy łańcucha jest wektorem π = ( 9, 9, ), gdzie π i = P(X = i) dla i =,,. Oblicz p = P(X = X X ) Odp: B-> 8. Rozwiązaie. Najpierw zauważmy, że rozkład π jest rozkładem stacjoarym. Obliczamy P(X = X X ) = P(X X X = )P(X = ). P(X X ) Oczywiście P(X = ) = π = 9, adto P(X X X = ) = P(X =, X = X = ) = P (, )P (, ) = = 8. Obliczamy P(X X ) = P(X =, X = ) + P(X =, X = ) = P (, )π + P (, )π = = 9 + = Stąd P(X = X X ) = 8.. (Eg 5/9) Rozważamy łańcuch Markowa X, X,..., a przestrzei staów {,, } o macierzy przejścia P = gdzie P i,j = P(X + = j X = i) dla i, j =,,. Niech Z, Z,..., Z,... będzie ciągiem zmieych losowych o wartościach w zbiorze {, } iezależych od siebie awzajem i od zmieych X, X,..., X,... o jedakowym rozkładzie prawdopodobieństwa:, P(Z i = ) = i P(Z i = ) =. Niech Y i = Z i X i. Wtedy lim P(Y > Y + ) jest rówa Odp: E->. Rozwiązaie. Wyzaczamy rozkład stacjoary łańcucha X, X,..., dostajemy π = ( 7, 8 7, 9 7 ). Przechodząc do graicy otrzymamy lim P(Y > Y + ) = P(Z > Z X X = )π + P(Z > Z X X = )π + + P(Z > Z X X = )π = P(Z = )P(Z = )P(X = X = )π + P(Z = )P(Z = )π + + P(Z = )P(Z = )P(X {, } X = )π + P(Z = )P(Z = )π = = 9 6
2 . (Eg 5/6) Załóżmy, że X, X,...X są iezależymi zmieymi losowymi o jedakowym, ciągłym rozkładzie prawdopodobieństwa, mającymi momety rzędu, i. Zamy µ = E(X i ) i σ = Var(X i ). Niech f(x) ozacza gęstość rozkładu pojedyczej zmieej X i. Wiemy, że rozkład jest symetryczy w tym sesie, że f(µ + x) = f(µ x) dla każdego x. Oblicz trzeci momet sumy E(S ), gdzie S = X X. Odp: C-> µ(µ + σ ). Rozwiązaie. Z faktu symetrii wyika, że EX i = µ, E(X i µ) = σ, E(X i µ) =. Stąd rówież E(S µ) =, E(S µ) = σ, E(S µ) =. Pozostaje obliczyć E(S ) = E(S µ + µ) = µσ + µ = µ(µ + σ ).. (Eg 5/) Niech X, X,..., X będą iezależymi zmieymi losowymi z rozkładu o gęstości f θ (x) = exp( x θ ). Niech T = X [,5]:, gdzie [x] ozacza część całkowitą liczby x. Które z poiższych stwierdzeń jest prawdziwe? Odp: A-> lim P(((T θ) > ) =,. Rozwiązaie. Zmiee X i mają rozkład o dystrybuacie { F (θ + t) = ( e (t θ) ) t θ e (θ t) t < θ Przypomijmy, że P(T t) jest takie same jak to, że zmiea S (t) z rozkładu Beroulliego B(, F (t)) będzie miała co ajmiej [, 5] sukcesów. Obliczamy dla zmieej S = S (θ + ) Pozostaje obliczyć P(((T θ) > ) = P(T > θ + ) = P(S < [, 5]) = = P( S F (θ + ) F (θ + )( F (θ + )) lim Z drugiej stroy z CTG wyika, że ( e ) [, 5] ( e )e < [, 5] ( e ) )e ( e =. S F (θ + ) Z, F (θ + )( F (θ + )) gdzie Z ma rozkład N (, ). Otrzymujemy wyik P(Z < ),. ).
3 5. (Eg 5/7) Niech X, X,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie ormalym N (m, ). Parametr m jest iezay i jest realizacją zmieej losowej o rozkładzie ormalym N (, ). Wyzaczamy estymator bayesowski parametru m przy fukcji straty LINEX daej wzorem L(m, a) = e m a (m a), gdzie a ozacza wartość estymatora. Załóżmy, że w wyiku doświadczeia uzyskao próbkę losową taką, że i= X i = 5. Wtedy estymator bayesowski przyjmuje wartość Odp: E-> 9 6. Rozwiązaie. W teorii decyzji statystyczej mamy do czyieia z regułami decyzyjymi δ : X A, dalej z fukcjami starty L : Θ A R oraz fukcjami ryzyka R(θ, δ) = E θ (θ, δ(x)). W przypadku reguł bayesowskich mamy zaday rozkład a priori ν a przestrzei parametrów Θ. Dzięki temu moża zdefiiować r(ν, δ) = R(θ, δ)ν(dθ). Dyspoując powyższym fukcjoałem defiiujemy optymalą regułę bayesowską δ µ jako argumet miimum fukcji r(µ, δ). Wyzaczeie optymalej reguły bayesowskiej polega a skorzystaiu ze wzoru Fubiiego L(θ, δ(x))µ θ (dx)ν(dθ) = L(θ, δ)ν x (dθ)µ(dx), Θ X gdzie miara µ θ jest rozkładem X a X przy prawdopodobieństwie P θ, adto miary µ i ν x (θ) wyzacza się ze wzoru µ θ (dx)ν(dθ) = ν x (dθ)µ(dx). Rozkład µ x azywa się rozkładem a posteriori. Dla każdego x X wybieramy wartość δ µ (x) jako argumet miimum fukcji f : A R f(δ) = L(θ, δ)ν x (dθ). Θ Dla L(θ, a) = (θ a) estymatorem bayesowski jest wartość oczekiwaa względem ν x, adto dla L(θ, a) = θ a tym estymatorem jest mediaa ν x. W przypadku fukcji LINEX L(m, a) = e m a (m a) obliczamy f (δ) = e m δ ν x (dm) Czyli δ(x) = log e m ν x (dm). R Należy zatem wyzaczyć rozkład a posteriori ν x. Mamy Θ µ m (dx) = (π) exp( X Θ (x i m) )dx...dx i= dalej ν(dm) = (π) exp( 6 (m ) ).
4 Stąd µ m (dx)ν(dm) jest rozkładem Gaussowskim, a zatem rówież ν x ma rozkład Gaussowski, co atychmiast pozwala wyzaczyć jego postać N ( + i= xi +, + ). Rozkład µ też jest Gaussowski i moża wyzaczyć jego postać, ie ma to jedak zaczeia dla tego zadaia. Pozostaje wyzaczyć e m ν x (dm) = exp( + i= x i + + ( + ) ). Stąd R δ(x) = + i= x i + + Podstawiając = oraz i= X i = dostajemy ( + ) = i= x i. ( + ) δ(x) = (Eg 5/6) O zmieych X, X,..., X o tej samej wartości oczekiwaej rówej µ oraz tej samej wariacji rówej µ oraz tej samej wariacji rówej σ zakładamy, iż: Cov(X i, X j ) = ρσ dla i j. Zmiee losowe ε, ε,..., ε są awzajem iezależe oraz iezależe od zmieych losowych X, X,..., X i mają rozkłady prawdopodobieństwa postaci: P(ε = ) = P(ε i = ) = P(ε i = ) =. Wariacja zmieej losowej S = i= ε ix i jest rówa. Odp: A-> (5σ + µ + ( )ρσ ). Rozwiązaie. Obliczamy wariację Var(S) = i= Var(ε i X i ) + i j Cov(ε i X i, ε j X j ) = = [ 5 (µ + σ ) µ ] + ( )[ ρσ ] = = (5σ + µ + ( )ρσ ). 7. (Eg 55/) Niech X i Y będą iezależymi zmieymi losowymi o rozkładach wykładiczych, przy czym EX =, EY = 6. Rozważmy zmieą Z = Y X+Y. Wtedy Odp: B-> mediaa rozkładu Z jest rówa,. Rozwiązaie. Poszukujemy C takiego, że stąd Y P( X + Y > C) =. = P(( C)Y > CX) = EP(( C)Y > CX X)) = Czyli ( C) = C, zatem C =, 6. Cx e 6( C) e x dx = + C. ( C)
5 8. (Eg 56/8) Cyfry,,,..., 9 ustawiamy losowo a miejscach o umerach,,,..., 9. Niech Xbędzie zmieą losową rówą liczbie cyfr stojących a miejscach o umerach rówych cyfrom. Wariacja zmieej X jest rówa Odp: B->. Rozwiązaie. Warto zapamiętać, że graicza liczba koicydecji jest zmieą Poissoa z parametrem, a więc i wariację rówą. W przypadku skończoym tego zadaia korzystamy ze zmieych włączeiowych X = X X 9, gdzie X i przyjmuje wartość jeśli i-ta cyfra stoi a swoim miejscu i w przeciwym przypadku. Jest jase, że P(X i = ) = 9 oraz P(X i =, X j = ) = 9 8 zatem Stąd VarX i = 8 9 9, Cov(X i, X j ) = Var(X) = 9VarX + 9 8Cov(X, X ) = =. 9. (Eg 57/) Niech X, X,..., X będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale (, θ), gdzie θ > jest iezaym parametrem. Rozważamy estymator parametru θ postaci T = ( + ) mi{x, X..., X }. Jeśli θ =, to dla każdego ε (, ) graica lim P( T > ε) jest rówa Odp: B-> e ε e ε. Rozwiązaie. Najpierw wyzaczamy rozkład T, dla < t < + Stąd dla T o rozkładzie wykładiczym P(T > t) = ( t + ) e t. lim P( T > ε) = P( T > ε) = P(T > + ε) + P(T < ε) = = e ε + e ε.. (Eg 57/9) Zmiee losowe X, X,..., X,... są iezależymi o jedakowym rozkładzie P(X = ) = P(X = ) = P(X = ) = P(X = ) =. Niech Y = oraz iech dla =,,,... zachodzi { gdy X = Y = mi(y, X ) gdy X < Oblicz lim P(Y ) Odp: B->. Rozwiązaie. Nietrudo zauważyć, że (Y ) = jest łańcuchem Markowa o macierzy przejścia P = 5
6 Obliczamy rozkład graiczy ze wzoru π = πp, zachodzi π = (, 6,, ). Zatem lim P(Y ) = π + + π + π =.. (Eg 58/) Niech X, X,..., X,... będą zmieymi losowymi o tym samym rozkładzie ujemym dwumiaowym P θ (X i = k) = (k + )θ ( θ) k, k =,,,..., i =,,..., +, gdzie θ (, ) jest iezaym parametrem. Zmiee X, X,..., X, X + są warukowo iezależe przy daym θ. Załóżmy, że rozkład a priori parametru θ jest rozkładem o gęstości π(θ) = θ ( θ), gdy θ (, ). Na podstawie próby losowej X, X,..., X wyzaczamy predyktor bayesowski. zmieej X + przy kwadratowej fukcji straty. Wariacja tego predykatora jest rówa Odp: D-> 8 +. Rozwiązaie. Podstawową wiedzą z teorii warukowych wartości oczekiwaych jest, że przy kwadratowej fukcji straty ajlepszym estymatorem X + jest E(X + X,..., X ), gdzie wartość oczekiwaa ozacza całkowaie względem miary P θ µ(dθ). Oczywiście z warukowej iezależości X,.., X pod warukiem Θ = θ dostajemy E(X + X,..., X ) = E(E(X + Θ, X,..., X ) X,..., X ) = = E( Θ Θ X,..., X ). Musimy wyzaczyć rozkład warukowy Θ pod warukiem X = k,..., X = k. Najpierw wyprowadzamy gęstość rozkładu łączego f(θ, k) = θ (+) ( θ) + i= ki i= (k i + ). Pozostaje wyzaczyć, gęstość f(θ k). Nietrudo zauważyć, że jest rozkład Beta(+, + i= k i). Dla zmieej Z z rozkładu Beta(α, β) oraz α > wartość EZ = α+β α, EZ = (α+β )(α+β ) (α )(α ). Stąd E( Θ Θ X,..., X ) = + i= X i =: T. ( + ) Nadto X X pod warukiem Θ = θ ma rozkład ujemy dwumiaowy B (, θ). Zatem Z własości rozkładu ujemego dwumiaowego oraz VarT = EVar(T Θ) + VarE(T Θ). E(T Θ) = + Θ Var(T Θ) = Korzystając z własości rozkładu Beta(, ) obliczamy ( ) + 8 ( + ) Θ Θ. VarE(T Θ) = 8 ( + ) 6
7 adto EVar(T Θ) = 8 ( + ) Podsumowując VarT = (Eg 58/8) Załóżmy, że W, W,..., W,... jest ciągiem zmieych losowych takim, że zmiea W ma rozkład jedostajy a przedziale (, ), dla każdej liczby aturalej zmiea losowa W + warukowo przy daych W, W,..., W ma gęstość { gdy w, 5 f(w + w,..., w ) = x gdyw >, 5 dla w + (, ). Wtedy lim P(W >, 5) jest rówa Odp: B-> 5 6. Rozwiązaie. Nietrudo zauważyć, że mamy do czyieia z jedorodym łańcuchem Markowa zdaym przez fukcję przejścia P (x, A) = A x + y dy x>. A Poszukujemy rozkładu stacjoarego π a [, ] takiego, że π(a) = A π([, ]) + y dyπ((, ]) Stąd atychmiast wyika, że π jest absolutie ciągłą względem miary Lebsegue a której gęstość f spełia waruek f(x) = π([, ]) x + π(, ])x x. Współczyiki a = π([, ]), b = π((, ]) wyzaczamy ze wzorów { a = a + b 8 = a + b Stąd a = b oraz a = 5, b = 5. Obliczamy A lim P(W > ) = π((, ]) = = ( 6 ) = = 75 8 = (Eg 59/) Dyspoujemy dwiema urami. W urie I mamy dwie kule białe i jedą czarą, w urie II mamy trzy kule białe i trzy czare. Powtarzamy razy eksperymet polegający a tym, że losujemy jedą kulę z ury I, ie oglądając jej wkładamy ją do ury II, astępie losujemy jedą kulę z ury II i ie oglądając jej wkładamy ją do ury I. Niech X ozacza zmieą losową rówą liczbie kul białych w urie I po doświadczeiach. Wtedy lim E(X X + ) jest rówa Odp: C-> 65. Rozwiązaie. Poowie korzystamy z teorii łańcuchów Markowa. Pod długim czasie rozkład kul będzie się stabilizował, aby wyzaczyć rozkład graiczy piszemy macierz przejścia dla liczby kul 7
8 w I urie Rozwiązujemy układ rówań S P = π = 7 π + π π = 5 7 π + π + 6 π π = π + 7 π = π + π + π + π którego rozwiązaiem jest π =, π = 5, π =, π = 5. Zatem Czyli lim E(X X + ) = E π (X X ) = k= l= klp (k, l)π k. lim E(X X + ) = = 65.. (Eg 6/) Niech X, X,..., X, >, będą iezależymi zmieymi losowymi z rozkładu Pareto o gęstości f(x) = ( + x) x>. Niech U = mi{x, X, X,..., X }. Wtedy Cov(U, X ) jest rówa Odp: C-> (+)(+). Rozwiązaie. Niech X ma rozkład taki jak X, X, X,..., X. Mamy P(X > t) = Stąd EX = P(X > t)dt =. Nadto P(U > t) = ( + t), t., t. ( + t) Zatem EU = P(X > t)dt = +. Pozostaje obliczyć X EUX = EX E(U X ) = EX dt = ( + t) = EX ( ( + X ) ) = ( ) t dt. ( + t) + Do policzeia występujących powyżej wartości oczekiwaych ajprościej użyć podstawieia x = +t t dt = ( + t) + ( + )( + ). x ( x)dx = Γ( + )Γ() Γ( + ) = 8
9 Zatem Cov(U, X ) = ( ( + )( + ) ) ( + ) = 9 = ( + )(9 ) = ( + )( + ). 5. (Eg 6/) Niech zmiea losowa S będzie liczbą sukcesów w ( > ) próbach Beroulliego z prawdopodobieństwem sukcesu p. O zdarzeiu losowym A wiemy, że P(A S = k) = a k dla k =,,,...,, gdzie a jest zaą liczbą < a. Oblicz E(S A). Odp: A-> p + p. Rozwiązaie. Obliczamy P(A) = P(A S = k)p(s = k) = k= Zatem korzystając z własości rozkładu Beroulliego E(S A) = P(A) = (ap) k= a k ( k k= a k k= kp({s = k} A) = (ap) ) p k ( p) k = ( p) + p. ( ) p k ( p) k = ap. k k= kp(a S = k)p(s = k) = 9
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowoma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Bardziej szczegółowoZadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Bardziej szczegółowo0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Bardziej szczegółowosą niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Bardziej szczegółowo1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Bardziej szczegółowo1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej
Bardziej szczegółowo1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Bardziej szczegółowoθx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Bardziej szczegółowo1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
Bardziej szczegółowoNiezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoTwierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowo1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoEstymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoRozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Bardziej szczegółowoKurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
Bardziej szczegółowoĆwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II
Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,
Bardziej szczegółowo40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.
Bardziej szczegółowoz przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Bardziej szczegółowoi=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =
Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają
Bardziej szczegółowoMACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Bardziej szczegółowo3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Bardziej szczegółowoNiech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Bardziej szczegółowoEstymatory nieobciążone o minimalnej wariancji
Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Bardziej szczegółowoStatystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Bardziej szczegółowoWYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Bardziej szczegółowoSTATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa I - 1
Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Bardziej szczegółowoZdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowo3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
Bardziej szczegółowoZmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowoPodstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Bardziej szczegółowoO liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Bardziej szczegółowoZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Bardziej szczegółowoZadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoAgata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Bardziej szczegółowoI. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
Bardziej szczegółowo12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
Bardziej szczegółowo16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Bardziej szczegółowoUKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowon k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Bardziej szczegółowoĆwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Bardziej szczegółowoEstymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoWykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
Bardziej szczegółowoDefinicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Bardziej szczegółowoWyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
Bardziej szczegółowoZmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Bardziej szczegółowooznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Bardziej szczegółowoĆwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoĆwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Bardziej szczegółowoWykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.
Bardziej szczegółowoZadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup
Szkice rozwiązań zadań z serii dwuastej oraz części zadań z kartkówki. Zadaie 1. Niech (X, F ) będzie martygałem. Czy X jest domykaly, jeśli ciąg EX l X jest zbieży? X jest zbieży prawie a pewo? X jest
Bardziej szczegółowoma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
Bardziej szczegółowoKADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoEstymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Bardziej szczegółowoZnajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Bardziej szczegółowozadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Bardziej szczegółowo. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Bardziej szczegółowo( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
Bardziej szczegółowoma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji
Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowoZadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Bardziej szczegółowoMetrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Bardziej szczegółowo