Twierdzenie Cayleya-Hamiltona
|
|
- Magda Czajka
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest w det ( A I ) c c λ λ λ + λ c to wówczas spełioe jest rówaie macierzowe w ( A) c A + c A c I Niech x i będzie wektorem własym odpowiadającym wartości własej λ i, czyli w ( λ i ) oraz Axi λ i xi - - Mamy: w A xi ( c A + c A c I) x i ( c λ i + c λ i c ) xi w λ x x i i i Powyższy związek jest prawdziwy dla dowolego wektora własego macierzy A, a więc w(a) musi być macierzą zerową. Przykład: A w ( λ ) λ λ w A Wykład 9-9
3 Zastosowaia tw. Cayleya-Hamiltoa Twierdzeie Cayleya-Hamiltoa moża wykorzystać do zalezieia odwrotości macierzy: w A c A A... I możąc obustroie przez A - + c + + c otrzymujemy: A w ( A) c A + c A c A a stąd A ( c A + c A c I) c Przykład: Zajdź macierz odwrotą do macierzy A λ 7 5 w ( λ ) 4 λ λ + 6 λ λ λ w ( A) A + 6 A A + 6 I A w ( A) A + 6 A I + 6 A - A ( A 6 A + I) Wykład 9-9
4 Zastosowaia tw. Cayleya-Hamiltoa Zastosowaie tw. Cayleya-Hamiltoa do zajdowaia wysokich potęg macierzy: ( A) w c A + c A c I A ( c A c I) c Możąc ostatie rówaie obustroie przez A i podstawiając go jedocześie za A dostajemy: + c A c c c c c c A... A I c c c c c Proces te może być kotyuoway, co ozacza, że dowolą całkowitą potęgę macierzy stopia moża zapisać w postaci wielomiau macierzy stopia co ajwyżej - Wykład 9-49
5 Zastosowaia tw. Cayleya-Hamiltoa Przykład: Zajdź macierz A jeśli A w λ λ λ λ 8 ( λ 4)( λ + ) λ 4, λ λ A więc wartościami własymi macierzy A są i czyli spełioe są rówaia włase: A x λ x oraz A x λ x A α A + β I A x α A+ β I x αλ + β x λ αλ + β A x α A + β I x αλ + β x λ αλ + β Stąd mamy: ( α + β ) ( αλ + β) Rozwiązując układ rówań względem α i β otrzymujemy: α ( λ λ ) ( ) 4 λ λ 6 β λ λ λ λ 4 + λ λ λ λ Z drugiej stroy, wiemy a podstawie tw. C-H, że macierz A możemy zapisać jako kombiację liiową macierzy A i I (poieważ A jest stopia ): A 4 A I 6 a więc: ( ) ( ) ( ) Wykład 9-59
6 Diagoalizacja macierzy kwadratowej Daa jest macierz A â. Jej wartości włase λ i i wektory włase spełiają rówaie Axi λ ix i dla i,..., Każde z rówań własych osobo moża zapisać w postaci: a a a xi λ i xi a a a xi λ i xi a a a xi λ i xi Natomiast wszystkie jedocześie daje się zapisać w zwartej postaci w formie: a a a x x x λ x λ x λ x a a a x x x λ x λ x λ x a a a x x x λ x λ x λ x x x x x x x x x x x i λ λ λ Wykład 9-69
7 Diagoalizacja macierzy kwadratowej Wprowadzając ozaczeia x x x λ x x x λ S oraz L x x x λ możemy powyższe rówaie macierzowe zapisać w postaci AS SL S - AS Wiosek: Wykorzystując macierz zbudowaą z wektorów własych moża za pomocą trasformacji podobieństwa przetrasformować macierz A do postaci diagoalej w której elemetami diagoalymi są wartości włase macierzy A. Przykład: Zdiagoalizuj macierz za pomocą trasformacji podobieństwa. A det ( A I) λ λ λ λ λ λ λ wektory włase: v oraz v - S S S AS ( ) ( ) ( ) ( λ ) λ - L Wykład 9-79
8 Diagoalizacja macierzy kwadratowej Po zormalizowaiu wektorów własych utworzoa macierz jest uitara (ortogoala) u oraz u - U U Trasformację - U AU U AU L azywamy uitarą trasformacją podobieństwa. Przykład: Zdiagoalizuj macierz za pomocą trasformacji podobieństwa. A det ( A λ I) ( λ )( λ ) λ, λ, 5 4 Wektory włase: λ : v λ, : v 6 4 Wiosek: Tej macierzy ie da się zdiagoalizować. Uwaga: Kompletym układem wektorów własych macierzy A â azywamy każdy układ liiowo iezależych wektorów własych tej macierzy. Macierze które ie posiadają kompletego układu wektorów własych azywamy iekompletymi. Uwaga: Macierz A â jest diagoalizowala wtedy i tylko wtedy gdy posiada komplety układ wektorów własych. Wykład 9-89
9 Macierze hermitowskie i symetrycze macierz (aty)hermitowska: macierz (aty)symetrycza: A ± A aij ± a ji T A ± A aij ± a ji * wartości włase macierzy hermitowskiej (lub rz. symetryczej) są rzeczywiste: D : A x λ x x A x λ x x ( ) ( * x A A x ) x x λ - λ * * x A λ x x A x λ x x ( * A A λ λ ) x x * x x λ λ wektory włase odpowiadające różym wartościom własym macierzy hermitowskiej (lub rz. symetryczej) są wzajemie ortogoale: D : A x λ x xa x λ x x x x A x λ x xa x λ x x λ λ - λ λ x x Defiicja: Macierz kwadratową A azywamy ormalą wtedy i tylko wtedy gdy komutuje oa ze swoim sprzężeiem hermitowskim, tz. AA A A. Wiosek: Wszystkie macierze (aty) hermitowskie (rz. (aty) symetrycze), uitare (rz. ortogoale) są macierzami ormalymi. Wykład 9-99
10 Diagoalizacja macierzy hermitowskiej Twierdzeie: Macierz hermitowską (lub rz. symetryczą) moża zdiagoalizować za pomocą macierzy uitarej (lub ortogoalej). D: W przypadku wszystkich różych wartości własych macierz moża zdiagoalizować - za pomocą trasformacji podobieństwa S AS L Pokażemy, że macierz hermitowską moża zdiagoalizować rówież w przypadku zdegeerowaych wartości własych. Niech λ będzie zdegeerowaą wartością własą macierzy hermitowskiej H â a x wektorem własym do tej wartości własej. Kostruujemy układ ortoormalych wektorów x i tak aby pierwszym z ich był x Z wektorów tych budujemy uitarą macierz U ( x x... x ) Trasformacja uitara ma dokładie te sam zestaw wartości własych co macierz H: U HU - - ( ) - det U HU λ I det U H λ I U det U det H λ I det U det U U det H λ I det H λ I Macierz U HU jest hermitowska: U HU U H U U HU Wykład 9-9
11 Diagoalizacja macierzy hermitowskiej Mamy: * x * x UHU H x x x * x x λ * * x α α x h h λ * x α α det H λ I det U HU λ I λ λ α λ α α α α λ α λ λ α α α λ α λ α α α α λ α Hx λ x oz Hxi h i, i x x δ α α α λ i i bo jest UHU hermitowska Wykład 9-9
12 Diagoalizacja macierzy hermitowskiej Defiiujemy macierz H stopia -: H α α α α α α α α α Wśród wartości własych H musi pojawić się λ. Kostruujemy układ - ortoormalych wektorów z których pierwszy jest wektorem własym macierzy H do wartości własej λ : y y y y y y y, y,..., y - y y y Defiiujemy uitarą macierz U stopia : U HU λ H U H y λ y y y y y Wykład 9-9
13 Diagoalizacja macierzy hermitowskiej Wówczas uitara trasformacja podobieństwa za pomocą U daje: U U HU U H y λ y y y δ λ λ * * λ y y y y β β H * * y y y y β β Jeśli λ jest m-krotie zdegeerowaą wartością własą to powyższy schemat powtarzamy m razy. Pozostała część macierzy może być zdiagoalizowaa przez wektory włase odpowiadające różym wartościom własym. Do zdiagoalizowaia macierzy stopia potrzeba - trasformacji uitarych: U HU Λ U UU U - Wiosek: Każda macierz hermitowska (lub rz. symetrycza) stopia posiada ortogoalych wektorów własych bez względu a degeeracje wartości własych. U HU U U HU U HU U Λ Λ Λ i i Wykład 9-9
14 Diagoalizacja macierzy hermitowskiej Przykład: Zajdź uitarą macierz U diagoalizującą poprzez trasformację podobieństwa macierz hermitowską i H i i i Wartości włase macierzy H są pierwiastkami jej rówaia charakterystyczego λ i det ( H λ I ) i λ i λ + 6 λ 9 λ λ ( λ ) i λ Mamy trzy wartości włase λ λ λ v v v v T Niech będzie jedym z wektorów własych do wartości własej λ : i v i i v v iv v v i v Wybieramy trzy liiowo iezależe wektory v v v Wykład 9-49
15 Diagoalizacja macierzy hermitowskiej Korzystając z metody Grama-Schmidta zajdujemy układ wektorów ortoormalych: v x x v v x v x v x x v x x x x U x x x i UHU i i i i i Uitara trasformacja podobieństwa za pomocą macierzy Wykład 9-59
16 Diagoalizacja macierzy hermitowskiej Poieważ H i UHU mają te same wartości włase, więc λ i λ muszą być wartościami własymi podmacierzy Zormalizowae wektory włase macierzy H do wartości własych λ i λ to i y i y U i i A więc macierz diagoalizująca U ma postać H i i 6 U UU i i i i 6 Wykład 9-69
17 Diagoalizacja macierzy hermitowskiej Rzeczywiście mamy: 6 i U HU i i i i i 6 6 i i 6 Kolumy macierzy U są ortoormalymi wektorami własymi macierzy H: i / / Hu λ u : i i i / / i / 6 / 6 Hu λ u : i i i / i / i / / 6 6 i / / Hu λ u : i i i / i / i / / Wykład 9-79
18 Diagoalizacja macierzy hermitowskiej W praktyce korzystamy z udowodioego twierdzeia. Wektory włase do iezdegeerowaych wartości własych zajdujemy w zwykły sposób. Wektory włase do zdegeerowaej wartości własej λ muszą spełiać waruek x ix x x ix + x W ogólości wektory włase dae są więc przez Jede z wektorów własych zajdujemy wybierając p. x : Drugi wektor wybieramy jako ortogoaly do : u u ix + x i u x x + x x u u ix + x ( ) x ix + x x ix x u x i i 6 Drugi wektor własy do wartości własej λ to Wykład 9-89
19 Rówoczesa diagoalizacja macierzy Twierdzeie: Dwie macierze A i B moża jedocześie zdiagoalizować poprzez trasformację podobieństwa wtedy i tylko wtedy gdy macierze A i B komutują tz. ABBA. ( ) D : D S AS DD S ASS BS S ABS D S BS D D S BSS AS S BAS D D D D S ABS- S BAS S ABS S BAS AB BA ( ) - - D : S AS D S BS B λ b λ b λ b S ABS S ASS BS DB λ b λ b λ b λ b λ b λ b S BAS S BSS AS B D λ b λ b λ b λb Dla λ i λ j AB BA D B B D B D λ b Wykład 9-99
20 Rówoczesa diagoalizacja macierzy Dla λ i λ j λ mamy Poieważ B B - S AS D λ λ - - S BS S BS T T ( S BS) T D - - ò i-ty wiersz ò j-ty wiersz więc istieje uitara macierz T taka, że: S AS T T D T D T T D Z drugiej stroy mamy A więc istieje macierz hermitowska UST diagoalizująca jedocześie A i B. Uwaga: W mechaice kwatowej operatory które moża jedocześie zdiagoalizować odpowiadają wielkościom fizyczym, których jedoczesy pomiar ie jest ograiczoy zasadą ieozaczoości. Wykład 9-9
21 Rówoczesa diagoalizacja macierzy Przykład: Zajdź uitarą macierz U diagoalizującą jedocześie macierze 8 7 A B AB BA 7 8 Zajdujemy wartości włase i wektory włase macierzy A: λ det A λ I ( λ )( λ ) λ λ λ v v A więc uitara macierz diagoalizująca to S S - Rzeczywiście mamy: - S AS - S BS 5 Jedocześie widać, że wartościami własymi macierzy B są λ i λ 5 Wykład 9-9
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
( ) WŁASNOŚCI MACIERZY
.Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
Planowanie doświadczeń - DPLD LMO Materiały pomocnicze
Plaowaie doświadczeń - DPLD LMO Materiały pomocicze Układ bloków kompletie zradomizowaych Założeia: (a) Z jedostek doświadczalych tworzymy rówolicze grupy zwae blokami (b bloków) w taki sposób, aby jedostki
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x
Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
Równania liniowe rzędu drugiego stałych współczynnikach
Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,
tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Równania różniczkowe
Rówaia różiczkowe Niech F: +, y: Def. Rówaiem różiczkowym zwyczajym rzędu azywamy rówaie postaci F(,y,y,y,, y () ) = (*) Rozwiązaiem rówaia (*) azywamy każdą fukcję y=y() taką, że po wstawieiu do rówaia
Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)
Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
2. Nieskończone ciągi liczbowe
Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi
"Liczby rządzą światem." Pitagoras
"Liczby rządzą światem." Pitagoras Def. Liczbą zespoloą azywamy liczbę postaci z= x +yi, gdzie x, y є oraz i = -1. Zbiór liczb zespoloych ozaczamy przez ={ x + yi: x, y є } Ozaczeia x= Re z częśd rzeczywista
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,
7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba
Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia
Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Ekonomia matematyczna - 1.1
Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x
Model Lesliego. Oznaczmy: 0 m i liczba potomstwa pojawiającego się co jednostkę czasu u osobnika z i-tej grupy wiekowej, i = 1,...
Model Lesliego Macierze Lesliego i Markowa K. Leśiak Wyodrębiamy w populaci k grup wiekowych. Po każde edostce czasu astępuą arodziy i zgoy oraz starzeie (przechodzeie do astępe grupy wiekowe). Chcemy
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
8. Udowodnić, że: a) macierz X X jest macierzą symetryczną; b) jeśli M jest macierzą idempotentną, o wyznaczniku różnym od 0, to M = I;
Powtórzeie z algebry, rachuku prawdopodobieństwa i statystyki Zadaia. Pokazać, że dla dowolego odwracalego A,.. Pokazać z defiicji, że macierz jest ieujemie określoa. 3. Pokazać (z defiicji liiowej iezależości),
Ekonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
3 Arytmetyka. 3.1 Zbiory liczbowe.
3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
CAŁKA NIEOZNACZONA. F (x) = f(x) dx.
CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
c 2 + d2 c 2 + d i, 2
3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12
Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Fraktale - ciąg g dalszy
Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Zadania przygotowawcze, 3 kolokwium
Zadania przygotowawcze, 3 kolokwium Mirosław Sobolewski 8 grudnia. Niech φ t : R 3 R 3 bedzie endomorfizmem określonym wzorem φ t ((x, x, )) (x +, tx + x, x + ), gdzie parametr t R. a) Zbadać dla jakiej
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej