Statystyka matematyczna. Wykład II. Estymacja punktowa
|
|
- Martyna Wysocka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Statystyka matematycza. Wykład II.
2 Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4
3 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych ciągłych Niech (Ω, F, P) będzie przestrzeią probabilistyczą. Rozkładem skokowej zmieej losowej X azywamy prawdopodobieństwo tego, że zmiea X może przybrać wartości x i, i = 1, 2,... P (ω 1 ) = P (X = x 1 ) = p 1... P (ω k ) = P (X = x k ) = p k... gdzie k p k = 1. Przestrzeń prawdopodobieństwa o skończoej lub przeliczalej liczbie zdarzeń elemetarych azywamy przestrzeią dyskretą.
4 dyskretych Rozkłady zmieeych losowych ciągłych Przykład. Ciąg {p } N λ λ p = e! dla = 0, 1, 2, 3,... określa am miarę probabilistyczą a zbiarze liczb aturalych. Przykład. Ciąg {p } N =0 λ λ e! = e λ =0 λ! = e λ e λ = 1 p = p (1 p) 1 dla = 1, 2, 3,... określa am miarę probabilistyczą a zbiarze liczb aturalych. p = p (1 p) 1 p = 1 (1 p) = 1 =1 =1
5 dyskretych Rozkłady zmieeych losowych ciągłych dyskretych Rokład rówomiery P (X = x i ) = 1 gdzie x 1,..., x realizacje zmieych losowych. EX = 1 Rokład zero-jedykowy x i, DX = 1 (x i EX) 2 P (X = 0) = q, P (X = 1) = p gdzie q, p 0, q + p = 1 lub P (X = x) = p x (1 p) 1 x atomiast EX = p, DX = pq
6 dyskretych Rozkłady zmieeych losowych ciągłych dyskretych Rokład dwumiaowy (Beroulli ego) ( ) P (X = k) = p k (1 p) k k gdzie 0 p 1 oraz k = 0, 1,...,, atomiast Rokład Poissoe a EX = p, DX = p (1 p) λ λk P (X = k) = e k! gdzie λ 1 oraz k = 0, 1,..., atomiast Rokład geometryczy EX = λ, DX = λ P (X = k) = p (1 p) k 1 gdzie 0 p 1 oraz k = 1, 2,..., atomiast EX = 1 p, DX = 1 p Estymacjapuktowa 2
7 Rozkład zmieej losowej ciągłej dyskretych Rozkłady zmieeych losowych ciągłych Jeżeli X jest zmieą losową ciągła, to P (X = x 0 ) = 0. Na (Ω, F, P) rozkład zmieej losowej X jest określoy za pomocą fukcji gęstości µ, przy czym P (X < x) = F (x) F (x 0) = x x x 0 µ (t) dt = F (x) µ (t) dt = 0 Wartością średia zmieej losowej X azywamy wielkość EX = xµ (x) dx, atomiast wariacja azywamy wielkość DX = E (X EX) 2 = (x EX) 2 µ (x) dx
8 Rozkład ormaly dyskretych Rozkłady zmieeych losowych ciągłych Fukcja gęstości ziemmej losowej X : Ω R o rozkładzie ormalym N (m, σ) jest daa wzorem [ ] γ (x, m, σ) = 1 (x m)2 exp. 2πσ 2σ Wartość oczekiwaa i wariacja zmieej losowej X wyoszą odpowiedio EX = m, DX = σ 2
9 Rozkład ormaly dyskretych Rozkłady zmieeych losowych ciągłych W przypadku wielowymiarowym: wekotr losowy ξ : Ω R ma rozkład ormaly N (m, Q), to fukcja gęstości ma postać 1 γ (x, m, Q) = [ (2π) det (Q) exp 1 ] 2 (x m)t Q 1 (x m). Dla dowolego λ R fukcję charakterystyczą zmieej losowej X możemy przedstawić w postaci } Ψ x (λ) = Ee iλx = exp {iλm λ2 2 σ2
10 dyskretych Rozkłady zmieeych losowych ciągłych ciągłych Rokład jedostajy a [a, b] gdzie a < b, atomiast f (x) = { 1 b a x [a, b] 0 x / [a, b] EX = a + b 2, DX = 1 (b a)2 12 Rokład wykładiczy { 1 f (x) = λ exp ( ) x λ x 0 0 x < 0 gdzie λ > 0, atomiast EX = λ, DX = λ 2
11 dyskretych Rozkłady zmieeych losowych ciągłych ciągłych Rokład Laplace a f (x) = 1 ( ) 2λ exp x µ λ gdzie λ > 0, µ R atomiast Rokład Cauchy;ego gdzie λ > 0, µ R EX = µ, DX = 2λ 2 f (x) = 1 π λ λ 2 + (x µ) 2
12 Niech rozkład badaej cechy X populacji zależy od iezaego parametru θ, który ależy oszacować w oparciu o elemetową próbę prostą X 1,..., X. Defiicja 1 Fukcję g (X 1,..., X ) będącą fukcją próby X 1,..., X azywamy statystyką. Widzimy że satystyka jest także zmieą losową, mającą także pewie rozkład zależy od postaci fukcji g () i od rozkładów zmieych X 1,..., X. Defiicja 2 Statystykę ˆθ (X 1,..., X ) określa am wartości iezaego parametru θ oraz azywamy ją estymatorem parametru θ. Wartość estymatora otrzymaą a podstawie jedej realizacji próby X 1,..., X azywamy oceą parametru θ.
13 Oczywiście dla parametru θ moża utworzyć wiele estymatorów ˆθ (X 1,..., X ), ale wraz ze zwiększeiem liczebości próbki powia wzrastać dokładość oszacowaia parametru θ. Defiicja 3 Estymator ˆθ azywamy estymatorem zgodym z parametrem θ, jeżeli dla dowolego ε > 0 ( ) lim P ˆθ θ < ε = 1 Defiicja 4 Estymator ˆθ azywamy estymatorem ieobciążoym parametru θ, jeżeli dla każdego E ˆθ = θ oraz rózicę B (θ) = E ˆθ θ azywamy obciążeiem estymatora.
14 Defiicja 5 W przypadku jeżeli lim B (θ) = lim E ˆθ θ = 0, to estymator ˆθ azywamy estymatorem asymptotyczie ieobciążoym parametru θ. Dla jedego parametru θ może istieć więcej iż jede estymotor ieobciążoy. Jeżeli ˆθ 1 i ˆθ ) 2 są dwoma) estymatorami ieobciążoymi parametru θ oraz D (ˆθ1 2 < D (ˆθ2 2 (gdzie D 2 () ozacza wariację estymatora) to mówimy że ˆθ 1 jest estymatorem efektywiejszym parametru θ iż ˆθ 2. Defiicja 6 Estymator ieobciążoy θ parametru θ, który ma ajmiejszą wariację wśród wszystkich ieobciążoych estymatorów wyzaczoych z elemetowych prób, azywamy estymatorem efektywym.
15 Wariacja dowolego ieobciążoego estymatora apełia astępującą ierówość zwaą ierówością Rao-Cramera D 2 (ˆθ ) 1 E [ θ l f (X, θ)] 2 gdzie f ozacza gęstość prawdopodobieństwa zmieej losowej X w przypadku zmieej typu ciągłego lub fukcję prawopodobieńtwa dla zmieej losowej typu skokowego. Jeżeli we wzorze zachodzi rówość wtedy estymator ˆθ jet estymatore efektywym. Defiicja 7 Wielkość E [ θ l f (X, θ)] 2 azywamy ilością iformacji Fishera zawartej w elemetowej próbie, a ierówość Rao-Cramera azywamy ierówością iformacyją.
16 Własości: 1. Wartość przecięta w próbce jest estymatorem ieobciążoym średiej ( ) E X 1 = E X i = 1 EX i = m atomiast V ar ( X) = V ar ( 1 2. Momet główy rzędu k jest estymatorem ieobciążoym ( 1 E m k = E ) X i = 1 2 V ar (X i ) = σ2 m k = 1 X k i ) = 1 X k i EX k i = EX k
17 3. W przypadku, gdy wartoś średia populacji µ ie jest zaa, to estymator wariacji S 2 S 2 = 1 ( Xi X ) 2 jest jestymatorem obciążoym wariacji w populacji σ 2, poieważ [ ES 2 1 ( = E Xi X ) ] [ 2 1 ( = E (Xi m) ( ] )) 2 X m [ 1 ( = E (X i m) 2 2 (X i m) ( ) ( ) ) ] 2 X m + X m = E = E = E [ 1 [ 1 [ 1 ] [ (X i m) 2 E 2 ( X m ) 1 ] (X i m) + E ] [ ( (X i m) 2 ) ] 2 2E X m + E (Xi m) 2 ] [ ( ) ] 2 E X m [ ( X m ) 2 ] = σ 2 V ar ( X), [ 1
18 a zatem ES 2 = σ 2 σ2 = ( 1) σ2 σ 2 Estymator wariacji S 2 1 S 2 1 = 1 1 ( Xi X ) 2 jest estymatorem ieobciążoym wariacji w populacji σ 2 przy iezaej wartości średiej µ w populacji.
19 4. W przypadku gdy wartość średia populacji µ jest zaa, to estymator wariacji S 2 S2 2 = 1 (X i m) 2 jest estymatorem ieobciążoym wariacji w populacji σ 2, [ ] [ ] ES 2 1 = E (X i m) 2 1 = E Xi 2 2m X i + m 2 = 1 EXi 2 2m EX i + m 2 = EX 2 2m 2 + m 2 = = EX 2 (EX) 2 = V ar (X) = σ 2
20 Niech rozkład badaej cechy X zależy od parametrów θ 1, θ 2,..., θ k. Na podstawie elemetowej próby prostej X 1,..., X, ( > k) tworzymy fukcję wiarygodośći L (θ 1, θ 2,..., θ k ) = f (X 1 ; θ 1, θ 2,..., θ k )... f (X ; θ 1, θ 2,..., θ k ) = f (X j ; θ 1, θ 2,..., θ k ), j=1 gdzie f () ozacza gęstość prawdopodobieństwa zmieej losowej X w przypadku zmieej typu ciągłego lub fukcję prawopodobieńtwa dla zmieej losowej typu skokowego. polega a wyzaczeiu estymatorów ˆθ 1, ˆθ 2,..., ˆθ k tak, aby fukcja wiarygodości L (θ 1, θ 2,..., θ k ) przyjęła wartość ajwiększą.
21 Fukcja l L (θ 1, θ 2,..., θ k ) osiąga wartość ajwiększą dla tych samych wartości parametrów co i fukcja L (θ 1, θ 2,..., θ k ). Zadaie polega max l L (θ 1, θ 2,..., θ k ). θ 1,θ 2,...,θ k Waruek koieczy istieia ekstremum jest postaci θ j l L (θ 1, θ 2,..., θ k ) = 0 dla j = 1,..., k (wartości podejrzae o ekstremum ˆθ 1, ˆθ 2,..., ˆθ k muszą spełiać te waruek). Jeżeli forma kwadratowa [ ] 2 l L (θ 1, θ 2,..., θ k ) θ i θ j i,j=1,...k w pukcie (ˆθ1, ˆθ 2,..., ˆθ ) k jest określoa ujemie, to (ˆθ1, ˆθ 2,..., ˆθ ) k jest rozwiązaiem zadaia.
22 W przypadku k = 1 (rozkład zmieej losowej X zależy tylko od jedego parametru θ), wtedy fukcja wiarygodości jest postaci L (θ) = f (X 1 ; θ)... f (X ; θ) = atomiast wartość ˆθ musi spełiać waruek l L (θ) = 0 θ oraz [ ] 2 l L (θ) θ2 θ=ˆθ < 0 f (X j ; θ) j=1
23 Uwaga 1 Jeżeli badaa cecha X zależy tylko od jedego parametru θ oraz istieje estymator efektywy ˆθ (X 1,..., X ) to jest o jedymym rozwiązaiem wyzaczoym za pomocą ajwiększej wiarygodości. Jeżeli badaa cecha X zależy więcej iż od jedego parametru to otzrymae stymatory za pomocą ajwiększej wiarygodości mogą być obciążoe. Ogólie, estymatory uzyskae metodą ajwiększej wiarygodości są estymatorami zgodymi, asymtotyczie ieobciążoymi i asymptotyczie efektywymi oraz mają rozkład asymptotyczie ormaly, ( tz. dla ) rozklad estymatora ˆθ 1 parametru θ jest N θ; E( θ l f)2
24 Przykład 1 Niech badaa cecha w populacji geeralej ma rozkład zero-jedykowy, P (X = x) = p x (1 p) 1 x gdzie 0 p 1 oraz x = 0 1. Na podstawie elemetowej próby x = (x 1,..., x ) korzystając z metody ajwiększej wiarygodości oszacować parametr p. Tworzymy fukcję wiarygodośći postaci L (x, p) = p xj (1 p) 1 xj. j=1
25 Logarytm aturaly z fukcji wiarygodości jest day wzorem l L (x, p) = atomiast pochoda [x j l p + (1 x j ) l (1 p)], j=1 l L (x, p) = p j=1 Przyrówując pochodą do zera otrzymujemy ˆp = 1 [ xj p 1 x ] j. 1 p x j. j=1
26 Metoda mometów polega a przyrówaiu pewej liczby mometow z próby (ajczęściej kolejych) do odpowiedich mometów rozkładu (będących fukcjami iezaych parametrów). W tym celu wykorzystujemy tyle mometów ile jest iezaych parametrów rozkładu, oraz rozwiązując otrzymay układ rówań otrzymujemy ocey tych parametrów. uzyskae metoda mometów a ogół ie są efektywe, iemiej jedak metoda mometów jest często używaa ze względu a swoją prostotę. Ocey uzyskae tą metodą ajczęściej wykorzystujemy jako pierwsze przybliżeie.
27 Przykład 2. Niech badaa cecha w populacji geeralej ma rozkład jedostajy a [a, b] { 1 f (x) = b a x [a, b] 0 x / [a, b] gdzie a < b Na podstawie elemetowej próby x = (x 1,..., x ) korzystając z metody mometów oszacować parametry a i b. Podstawowe momety dla rozkładu jedostajego a [a, b] wyoszą Rozwiązując układ rówań EX = a + b 2, DX = 1 (b a)2 12 a+b 2 = 1 otzrymujemy wielkości a i b. x j j= (b a)2 = 1 ( xj X ) 2 j=1
28 Przykład 3. Niech badaa cecha w populacji geeralej ma rozkład Lasplace a f (x) = 1 ( ) 2λ exp x µ λ gdzie λ > 0, µ R Na podstawie elemetowej próby x = (x 1,..., x ) korzystając z metody mometów oszacować parametry λ, µ. Podstawowe momety dla rozkładu Laplace a wyoszą EX = µ, DX = 2λ 2.
29 Rozwiązując układ rówań µ = 1 2λ 2 = 1 x j = X j=1 ( xj X ) 2 j=1 otzrymujemy ˆµ = 1 ˆλ = x j j=1 1 2 (x j ˆµ) 2 j=1
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Bardziej szczegółowoZadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Bardziej szczegółowoEstymatory nieobciążone o minimalnej wariancji
Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Bardziej szczegółowoZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
Bardziej szczegółowoLiczebnośd (w tys.) n
STATYSTYKA Statystyka bada prawidłowości w zjawiskach masowych (tz. takich, które mogą występowad ieograiczoą ilośd razy). Przedmiotem badao statyki są zbiory (populacje), których elemetami są wszelkiego
Bardziej szczegółowoTwierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Bardziej szczegółowoθx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Bardziej szczegółowoPodstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Bardziej szczegółowoStatystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Bardziej szczegółowo0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Bardziej szczegółowoNiezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoEstymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowo16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Bardziej szczegółowoPojcie estymacji. Metody probabilistyczne i statystyka Wykład 9: Estymacja punktowa. Własnoci estymatorów. Rozkłady statystyk z próby.
Pojcie estymacji Metody probabilistycze i statystyka Wykład 9: Estymacja puktowa. Własoci estymatorów. Rozkłady statystyk z próby. Szacowaie wartoci parametrów lub rozkładu zmieej losowej w populacji geeralej
Bardziej szczegółowoModele probabilistyczne zjawisk losowych
Statystyka-matematycza-II Wykład Modele probabilistycze zjawisk losowych Pojęcia podstawowe: Zdarzeia elemetare: ajprostsze zdarzeie mogące być wyróżioe dla daego doświadczeia losowego. Ω - zbiór zdarzeń
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Bardziej szczegółowoZdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowoEstymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Bardziej szczegółowoZmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
Bardziej szczegółowoZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Bardziej szczegółowoPRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Bardziej szczegółowoModa (Mo, D) wartość cechy występującej najczęściej (najliczniej).
Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy
Bardziej szczegółowo1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Bardziej szczegółowoWYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowaie daych Podstawy wioskowaia statystyczego. Prawo wielkich liczb. Cetrale twierdzeie graicze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Wprowadzeie Jeśli S
Bardziej szczegółowo1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Bardziej szczegółowoElementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowoz przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Bardziej szczegółowo1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
Bardziej szczegółowoMODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Bardziej szczegółowoP ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.
Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy
Bardziej szczegółowooznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Bardziej szczegółowoLista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Bardziej szczegółowo3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Bardziej szczegółowo0.1 Statystyczne Podstawy Modelu Regresji
0.1 Statystycze Podstawy Modelu Regresji iech daa będzie przestrzeń probabilistycza (Ω, F, P ). Fukcję X : Ω R, określoą a przestrzei zdarzeń elemetarych Ω, o wartościach rzeczywistych, takich że x R {ω
Bardziej szczegółowo1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Bardziej szczegółowoPodstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Bardziej szczegółowoZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Bardziej szczegółowoStatystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Bardziej szczegółowoZMIENNA LOSOWA I JEJ PARAMETRY -powtórzenie
WNIOSKOWANIE STATYSTYCZNE ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzeie,, S P przestrzeń probabilistycza (matematyczy model zjawiska losowego), zbiór wszystkich zdarzeń elemetarych, S zbiór zdarzeń, (podzbiory
Bardziej szczegółowoJarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Bardziej szczegółowoStatystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Bardziej szczegółowoMetoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Bardziej szczegółowoSTATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Bardziej szczegółowoZSTA LMO Zadania na ćwiczenia
ZSTA LMO Zadaia a ćwiczeia Efektywość estymatorów ieobciążoych Zadaie 1. Zakładamy, że badaa cecha X populacji ma rozkład Poissoa πλ, gdzie λ > 0 jest parametrem. Poadto, iech X = X 1, X,..., X będzie
Bardziej szczegółowo1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Bardziej szczegółowon n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc
5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X
Bardziej szczegółowoWykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
Bardziej szczegółowo1) Jakie są różnice pomiędzy analiza danych a wnioskowaniem statystycznym?
Plaowaie Eksperymetów 1) Jakie są różice pomiędzy aaliza daych a wioskowaiem statystyczym? Celem aalizy daych jest prezetacja kokretego zbioru daych, w sposób ukazujący jego właściwości, w szczególości
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Bardziej szczegółowoCiągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
Bardziej szczegółowoStatystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3
Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka Wnioskowanie statystyczne. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Rachek rawdoodobieństwa i statystyka Wioskowaie statystycze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, ok407 ada@agh.ed.l Estymacja arametrycza Podstawowym arzędziem szacowaia iezaego arametr jest estymator
Bardziej szczegółowoI kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Bardziej szczegółowoKurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
Bardziej szczegółowoEgzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Bardziej szczegółowoWektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
Bardziej szczegółowoKADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Bardziej szczegółowod wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Bardziej szczegółowoPODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE
Marek Cieciura, Jausz Zacharski PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ IV STATYSTYKA MATEMATYCZNA Na prawach rękopisu Warszawa, wrzesień 0 Data ostatiej aktualizacji: piątek,
Bardziej szczegółowoO pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Bardziej szczegółowosą niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Bardziej szczegółowoP = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Bardziej szczegółowoPlan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia
Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk
Bardziej szczegółowo1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Bardziej szczegółowoWykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowo3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Bardziej szczegółowoKorelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Bardziej szczegółowoEstymacja współczynnika dopasowania w klasycznym modelu ryzyka
Ogólopolska Koferecja Naukowa Zagadieia Aktuariale Teoria i praktyka Warszawa, 9- czerwca 008 Estymacja współczyika dopasowaia w klasyczym modelu ryzyka Aa Nikodem Uiwersytet Ekoomiczy we Wrocławiu Klasyczy
Bardziej szczegółowoPunktowe procesy niejednorodne
Modelowaie i Aaliza Daych Przestrzeych Wykład 5 Adrzej Leśiak Katedra Geoiformatyki i Iformatyki Stosowaej Akademia Góriczo-Huticza w Krakowie Puktowe procesy iejedorode Jak wcześiej wspomiao, dla procesów
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowoWybrane litery alfabetu greckiego
Wybrae litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilo η eta Θ θ theta κ kappa Λ λ lambda µ mi ν i ξ ksi π pi ρ, ϱ ro σ sigma τ tau Φ φ, ϕ fi χ chi Ψ ψ psi Ω ω omega Ozaczeia a i
Bardziej szczegółowoMetoda największej wiarogodności
Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm
Bardziej szczegółowoWzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
Bardziej szczegółowoWykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa)
STATYSTYKA MATEMATYCZNA WYKŁAD 0 (powt. wiadomości z r. p-stwa) Literatura M. Cieciura, J. Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 005 R.Leiter, J.Zacharski, "Zarys
Bardziej szczegółowoa 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Bardziej szczegółowoUKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Bardziej szczegółowo8. Udowodnić, że: a) macierz X X jest macierzą symetryczną; b) jeśli M jest macierzą idempotentną, o wyznaczniku różnym od 0, to M = I;
Powtórzeie z algebry, rachuku prawdopodobieństwa i statystyki Zadaia. Pokazać, że dla dowolego odwracalego A,.. Pokazać z defiicji, że macierz jest ieujemie określoa. 3. Pokazać (z defiicji liiowej iezależości),
Bardziej szczegółowo2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Bardziej szczegółowoStatystyka w rozumieniu tego wykładu to zbiór metod służących pozyskiwaniu, prezentacji, analizie danych.
Statystyka w rozumieiu tego wykładu to zbiór metod służących pozyskiwaiu, prezetacji, aalizie daych. Celem geeralym stosowaia tych metod, jest otrzymywaie, a podstawie daych, użyteczych uogólioych iformacji
Bardziej szczegółowo