Zeszyty naukowe nr 9
|
|
- Dariusz Jarosz
- 10 lat temu
- Przeglądów:
Transkrypt
1 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę kostrukcji liiowego, potęgowego, wykładiczego i logarytmiczego modelu ekoometryczego zależości otowań ołowiu i akcji spółki Orzeł Biały S.A. zajmującej się odzyskiwaiem ołowiu z wyeksploatowaych akumulatorów. Dae do modelu pochodzą z pięciomiesięczego okresu otowań ołowiu a Lodo Metal Exchage i akcji spółki Orzeł Biały S.A. a Giełdzie Papierów Wartościowych w Warszawie. Abstract The preset article describes the attempt to costructio of the liear, power, expoetial ad logarithmic ecoometric models of depedece betwee quotatios of the lead ad the stock of Orzeł Biały S.A., the compay recoverig the lead from exploited accumulators. The data to the model iclude the five-moth period of quotatios of the lead o Lodo Metal Exchage ad the stock of Orzeł Biały S.A. o Warsaw Stock Exchage. 1. Wstęp Celem iiejszej pracy jest testowaie hipotezy o liiowej, ewetualie potęgowej, wykładiczej lub logarytmiczej zależości pomiędzy dwiema zmieymi: giełdowymi otowaiami ołowiu jako zmieą objaśiającą x i kursem akcji spółki Orzeł Biały S.A. (OBL) zajmującej się odzyskiwaiem ołowiu z wyeksploatowaych akumulatorów jako zmieą objaśiaą y. Oszacowaie modelu takiej zależości mogłoby być pomoce w progozowaiu otowań OBL a podstawie przewidywaego tredu ce ołowiu.
2 Notowaia Dae użyte w iiejszym opracowaiu pochodzą ze stroy iteretowej [4]. Poiżej przedstawioe jest tabelarycze zestawieie otowań ołowiu a Lodo Metal Exchage (LME) - dostawa za 3 miesiące w USD/t (zmiea x) oraz kurs zamkięcia OBL a Giełdzie Papierów Wartościowych (GPW) w PLN (zmiea w półroczym okresie od połowy listopada 2010 do połowy kwietia W zestawieiu tym pomiięte są soboty i iedziele, czyli di tygodia, w których obie giełdy są ieczye oraz dodatkowo , , i di, w których ie była czya GPW. Tabela podaje rówieżśredi kurs NBP dolara względem złotego (zmiea z). Tabela1. Notowaia ołowiu a LME x w USD/t, kurs akcji OBL a GPW y w PLN oraz średi kurs NBP dolara z w PLN/USD (a podstawie [4]) Data x (USD/t) Y (PLN) z (PLN/USD) Data x (USD/t) Y (PLN) z (PLN/USD) ,0 24,3 2, ,5 23,8 2, ,0 23,5 2, ,0 23,5 2, ,0 23,2 2, ,0 23,0 2, ,0 23,4 2, ,0 22,5 2, ,0 23,5 2, ,0 23,4 2, ,0 23,4 2, ,0 23,7 2, ,0 23,0 2, ,0 23,5 2, ,0 23,0 2, ,5 23,9 2, ,0 22,8 2, ,0 24,9 2, ,0 22,5 3, ,0 25,4 2, ,0 22,5 3, ,0 25,4 2, ,0 22,9 3, ,0 25,1 2, ,0 22,0 3, ,0 25,6 2, ,0 22,3 3, ,0 25,7 2, ,0 22,5 3, ,0 25,7 2, ,0 22,6 3, ,0 25,0 2, ,0 23,2 2, ,0 24,8 2, ,0 23,9 3, ,0 25,6 2, ,0 23,9 3, ,0 25,7 2, ,0 23,9 3, ,0 25,7 2, ,0 23,5 3, ,0 25,9 2, ,0 23,6 2, ,0 26,5 2, ,5 23,5 2, ,0 26,5 2,8843
3 ,0 23,1 3, ,0 27,0 2, ,5 23,5 2, ,0 27,1 2, ,0 23,5 3, ,0 27,0 2, ,0 23,5 3, ,0 27,0 2, ,0 23,5 3, ,0 26,9 2, ,5 23,0 3, ,0 25,8 2, ,0 23,2 3, ,0 25,8 2, ,0 23,0 3, ,0 25,8 2, ,0 23,1 3, ,0 25,2 2, ,5 23,9 2, ,0 25,0 2, ,5 23,6 2, ,0 25,3 2, ,5 24,1 2, ,0 26,0 2, ,0 24,1 2, ,0 26,0 2, ,0 23,7 2, ,0 25,5 2, ,0 24,0 2, ,0 25,6 2, ,0 23,4 3, ,0 25,5 2, ,5 23,7 3, ,0 25,4 2, ,0 24,0 3, ,0 25,1 2, ,0 24,0 2, ,0 24,5 2, ,0 24,0 2, ,0 24,3 2, ,0 23,6 2, ,0 24,5 2, ,0 23,8 2, ,0 24,4 2, ,0 23,6 2, ,0 24,3 2, ,0 23,8 2, ,0 24,5 2, ,0 23,8 2, ,0 24,4 2, ,0 23,7 2, ,5 24,4 2, ,0 23,7 2, ,0 24,0 2, ,0 23,7 2, ,5 24,3 2, ,0 23,7 2, ,0 23,9 2, ,0 24,0 2, Liiowy model zależości Hipoteza dodatiej korelacji otowań ołowiu i akcji Orła Białego jest aturala ze względu a przedmiot działalości tej spółki. Nie jest oczywiste, czy związek tych dwóch wielkości jest istoty, gdyż jest jeszcze wiele iych czyików, które mogą wpływać a kurs OBL, a iekoieczie a otowaia ołowiu. Przykłady takich czyików moża zaleźć w prospekcie emisyjym
4 174 spółki [3] (Dokumet Podsumowujący s. 7, Dokumet Rejestracyjy s. 9-15): kurs dolara, działalość kokurecyjej firmy Baterpol Spółka z o.o., ryzyko powstaia iego przedsiębiorstwa utylizującego akumulatory, straty spowodowae ewetualymi szkodami góriczymi a tereach spółki, duże awarie maszy, ograiczeia dostaw gazu i eergii elektryczej w sytuacjach awaryjych. Dalej spośród ich rozpatrywać będziemy jedyie kurs dolara ze względu a słabą mierzalość i brak daych o iych. Poiżej pokazujemy kostrukcję modelu wspomiaej zależości. Wszystkie obliczeia wykoao za pomocą programu Microsoft Excel. Kostrukcję modelu liiowego zaczyamy od wyzaczeia współczyika korelacji liiowej między zmieymi x i y dla aszej próby ze wzoru (zobacz a przykład [1], s. 481): r i ( ( x x)( y = 1 i i ( x, =. 2 2 x = i i x) ( y i= i 1 1 Dla aszych daych uzyskujemy r ( x, = 0,4837. Wysoka wartość współczyika korelacji dla dużej próby ozacza, że prawdopodobie zmiee x i y są skorelowae w całej populacji otowań, to zaczy, że współczyik korelacji dla populacji ρ jest iezerowy. Moża to zweryfikować stosując test istotości opisay a przykład w [1], s Dla hipotezy zerowej postaci H 0 : ρ = 0 i alteratywej H 0 : ρ 0 test te wykorzystuje statystykę r t = 2 1 r 2 o rozkładzie Studeta z -2 stopiami swobody. Dla = 105 rozkład te moża uzać za rozkład przybliżeiu ormaly. Wartość statystyki testowej wyosi t = 5, 6089, wobec wartość krytyczej 5,3267 a poziomie istotości α =10 7 (uzyskaej z odpowiedich tablic rozkładu ormalego). Możemy zatem uzać, że współczyik korelacji jest istotie iezerowy i przyjąć liiową postać modelu zależości między x i y:
5 175 y = α x + β + ε, gdzie ε jest składikiem losowym (zobacz a przykład [1], s ). Ocey a i b parametrów odpowiedio α i β są wyliczae metodą ajmiejszych kwadratów, to zaczy tak, by miimalizowały wartość wyrażeia 2 ( ˆ ) i = y 1 i yi, gdzie (y i )są wartościami rzeczywistymi, a ( y ˆi = α xi + β ) teoretyczymi zmieej y. Odpowiedie wzory pozwalające obliczyć te ocey mają postać: a ( i= 1 = xi x)( yi, 2 ( x x) i= 1 b = y ax, gdzie x ozacza średią wartość ( x i ), a y - średią wartość ( y i ). Stosując powyższe wzory do aszych daych wyzaczamy oszacowaie modelu liiowego: y = 0,0039x + 14, ε. Miarą dopasowaia wartości rzeczywistych i teoretyczych może być współczyik determiacji r 2 ( x,, którego wartości bliskie 1 wskazują a dobre dopasowaie oszacowaego modelu do daych (zobacz [2], s.41). Dla aszych daych otrzymamy wartość i r 2 ( x, = 0,2340, która wskazuje iestety a iedopasowaie wartości teoretyczych i rzeczywistych. 4. Uwzględieie zmia kursowych Wielkości w powyższym modelu są mierzoe w różych jedostkach pieiężych, których zależość jest zmiea. Wydawać by się mogło, że ustaleie jedej jedostki, a więc a przykład przeliczeie otowań ołowiu
6 176 z USD/t a PLN/t według aktualego kursu dolara, zdecydowaie poprawi jakość modelu. Okazuje się jedak, że tak ie jest. W Tabeli 1 podao średi kurs dolara w NBP z daego dia z, a podstawie którego moża przeliczyć otowaia ołowiu a złotówki według wzoru xz. Współczyik korelacji dla podaych otowań ołowiu a LME wyrażoych w PLN/t (xz) i otowań OBL ( wyosi r( xz, = 0,2391 i jest dużo miejszy iż odpowiedi współczyik dla otowań ołowiu ieprzeliczoych a złotówki (0,4837). W związku z tym budowaie odpowiediego modelu liiowego ie ma sesu, bo będzie o jeszcze słabiej dopasoway do daych, iż poprzedi. W zestawieiu z tymi faktami ciekawe jest to, że współczyik korelacji pomiędzy kursem dolara (z), a otowaiami OBL ( jest zacząco róży od zera i wyosi r ( z, = 0,3109. Przeprowadzając test istotości opisay w rozdziale 3. stwierdzamy, że a poziomie istotości 0,001 korelacja w całej populacji otowań jest istotie iezerowa (wartość statystyki testowej wyosi t = 3, 3201, czyli t = 3, 3201, wobec wartości krytyczej 3,2905). Ozacza to, że po części wzrost kursu dolara idzie w parze ze spadkiem otowań OBL, co prawdopodobie wiąże się z odpływem kapitału spekulacyjego z giełdy warszawskiej w sytuacji słabącej złotówki. Powyższa uwaga mogłaby sugerować, że lepszym modelem wyjaśiającym otowaia OBL będzie model liiowy dwóch zmieych postaci y = α x + βz + γ + ε ze względu iezerową korelację kursu dolara (z), a otowaiami OBL (. Niestety, współczyik korelacji pomiędzy x i z wyosi r( x, z) = 0,3135 i jest większy co do wartości bezwzględej od współczyika korelacji między z i y. Tak więc x i z ie adają się a quasi-iezależe zmiee modelu (zobacz [2], s. 64).
7 Modele ieliiowe Powodem słabego dopasowaia modelu do daych może być iewłaściwa postać aalitycza modelu. Próbujemy zatem przetestować użycie typowych modeli ieliiowych, sprowadzalych do liiowych: potęgowego, wykładiczego i logarytmiczego. Przez model potęgowy rozumiemy hipotetyczą zależość postaci a ε y = bx e. Logarytmując obie stroy powyższej rówości, sprowadzamy model potęgowy do modelu liiowego: y ' = ax' + b' +ε, gdzie b'= lb, x'= l x, y'= l y. Model wykładiczy to hipotetycza zależość postaci x ε y = ba e. Logarytmując obie stroy powyższej rówości, sprowadzamy model potęgowy do modelu liiowego: y ' = a' x + b' +ε, gdzie b'= lb, a'= l a, y'= l y. Model logarytmiczy to hipotetyczą zależość postaci y = al x + b + ε, sprowadzala do zależości liiowej y = ax' + b + ε przez podstawieie x'= l x. Najprostszym kryterium wyboru postaci modelu spośród powyższych może być wartość współczyika korelacji zmieych w modelu zliearyzowaym. Dla aszych daych uzyskujemy: r ( x', y') = r(l x,l = 0,5026, r ( x, y') = r( x,l = 0,4949, r ( x', = r(l x, = 0,4923.
8 178 Użycie otowań ołowiu przeliczoych a złotówki w miejsce orygialych wyrażoych w dolarach, czyli zmiaa zmieej x a xz daje wyiki słabsze: r (l( xz),l = 0,2719, r ( xz,l = 0,2468, r (l( xz), = 0,2640. Spośród rozpatrywaych wariatów ajlepszym okazał się model potęgowy zmieych x i y. Według rozpatrywaego kryterium jest o ieco lepszy od modelu liiowego. Zliearyzowaa postać tego modelu ma oszacowaie: y ' = x' 0, ε, dla którego współczyik determiacji wyosi r 2 = 0,2526, a więc iezaczie więcej, iż w modelu liiowym. Wyzaczając b = e b' = e 0,0531 = 0,9483, otrzymujemy oszacowaie modelu potęgowego: y 0,4138 ε = 0,9483x e. 5. Wioski Powyższe rozważaia pokazują a kokretym przykładzie trudość uzyskaia dobrego w sesie ekoometryczym modelu zależości otowań giełdowych. Nie ozacza to, że szukaie takich zależości ie ma sesu, gdyż każde badaie statystycze typu szukaie korelacji daje pewie zasób iformacji o związku (lub braku związku) pomiędzy badaymi wielkościami. W aszym przypadku awet tak iedoskoałe modele, jak opisae, mogłyby być podstawą do progozowaia orietacyjego poziomu otowań OBL w sytuacji, gdy uważamy światowe cey surowców za bardziej przewidywale iż otowaia akcji a GPW.
9 179 Bibliografia 1. Aczel A.D., Statystyka w zarządzaiu, PWN, Warszawa 2000, ISBN Welfe A., Ekoometria, Państwowe Wydawictwo Ekoomicze, Warszawa 2008, ISBN Prospekt emisyjy trzyczęściowy spółki Orzeł Biały S.A. [olie], 2007, dostępy w World Wide Web:
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny
TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Ekonometria Mirosław Wójciak
Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Statystyka opisowa. () Statystyka opisowa 24 maja / 8
Część I Statystyka opisowa () Statystyka opisowa 24 maja 2010 1 / 8 Niech x 1, x 2,..., x będą wyikami pomiarów, p. temperatury, ciśieia, poziomu rzeki, wielkości ploów itp. Przykład 1: wyiki pomiarów
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Wykład 11 ( ). Przedziały ufności dla średniej
Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;
TESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
Parametryczne Testy Istotności
Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871
COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3
L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
PRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test
BADANIA DOCHODU I RYZYKA INWESTYCJI
StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu
dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu
STATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2
Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
Statystyka matematyczna dla leśników
Statystyka matematycza dla leśików Wydział Leśy Kieruek leśictwo Studia Stacjoare I Stopia Rok akademicki 0/0 Wykład 5 Testy statystycze Ogóle zasady testowaia hipotez statystyczych, rodzaje hipotez, rodzaje
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY
SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą
Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja
Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15
Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,
θx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS
Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.
Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Uwarunkowania rozwojowe województw w Polsce analiza statystyczno-ekonometryczna
3 MAŁGORZATA STEC Dr Małgorzata Stec Zakład Statystyki i Ekoometrii Uiwersytet Rzeszowski Uwarukowaia rozwojowe województw w Polsce aaliza statystyczo-ekoometrycza WPROWADZENIE Rozwój społeczo-gospodarczy
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Wykład 10 Wnioskowanie o proporcjach
Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
ANALIZA KORELACJI IREGRESJILINIOWEJ
ANALIZA KORELACJI IREGRESJILINIOWEJ 1. ZALEŻNOŚCI STOCHASTYCZNE Badajac zjawiska o charakterze masowym, w tym szczególie zjawiska spo leczo-ekoomicze, stwierdzamy, że każde z ich jest uwarukowae dzia laiem
Przemysław Jaśko Wydział Ekonomii i Stosunków Międzynarodowych, Uniwersytet Ekonomiczny w Krakowie
MODELE SCORINGU KREDYTOWEGO Z WYKORZYSTANIEM NARZĘDZI DATA MINING ANALIZA PORÓWNAWCZA Przemysław Jaśko Wydział Ekoomii i Stosuków Międzyarodowych, Uiwersytet Ekoomiczy w Krakowie 1 WROWADZENIE Modele aplikacyjego
Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona
Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności
(X i X) 2. n 1. X m S
Wykład 8. Przedziały ufości i testowaie hipotez A gdy ie zamy wariacji σ 2? Załóżmy, że X ma rozkład ormaly, ale ie zamy wartości ai m ai σ 2. Jak wtedy szacować wartość średią m? Przypomijmy, że Wtedy
Wprowadzenie do laboratorium 1
Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
Metody analizy długozasięgowej
Copyright (c) 999-00 by Hugo Steihaus Ceter Metody aalizy długozasięgowej Adrzej Zacharewicz Warsztat aalizy zależości długotermiowej jest wciąż rozwijay i udoskoalay. Od czasów Hursta (95) i jego aalizy
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Ćwiczenie: Test chi 2 i miary na nim oparte.
Ćwiczeie: Test chi 2 i miary a im oparte. Zadaie (MS EXCEL) Czy istieje zależość między płcią a paleiem papierosów? 1. W arkuszu Excel utworzyć dwie tabele 2. Uzupełić wartości w tabeli z daymi obserwowaymi
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem
d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste
Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej
Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.
Statystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Zyskowność i statystyczna istotność reguł analizy technicznej
Katarzyna Sagan nr albumu: 240006 Robert Chyliński nr albumu: 239779 Zyskowność i statystyczna istotność reguł analizy technicznej White's Reality Check Praca zaliczeniowa wykonana w ramach przedmiotu:
Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im