MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty"

Transkrypt

1 MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka. Retą beztermiową azywamy ieskończoy rokroczy ciąg wypłat. Ile ależy zaiwestować (p. wpłacić a pewe koto), aby móc otrzymywać taką retę? Zakładamy, że rocza efektywa stopa procetowa wyosi i. Załóżmy, że wypłaty mają wyosić po 1 każda, zaczyając od chwili (tzw. reta z góry). OW takiej rety wyosi ä = 1 + v + v = 1 1 v = 1 d. Istotie, obeca wartośc wypłaty 1 po -tym roku wyosi v i sumując po od do otrzymujemy powyższy wzór. Jeśli wypłaty są rówe 1 i pierwsza ma astąpić po pierwszym roku, (tzw. reta z dołu), to jej OW wyosi a = v + v = v 1 v = 1 i. Jeżeli wypłaty mają astępować od chwili, m razy w ciągu roku, po 1/m każda, (tzw. m-krota reta z góry), to jej OW wyosi ä (m) = 1 m + 1 m v1/m + 1 m v2/m +... = 1 1 m 1 v = 1 1/m W przypadku m-krotej rety z dołu (pierwsza wypłata po 1/m-tej roku) OW wyosi a (m) = 1 m v1/m + 1 m v2/m +... = 1 v 1/m m 1 v = 1 1/m Retą pewą azywamy skończoy ciąg wypłat, tz. wypłacae do pewej skończoej i z góry określoej chwili. Za jedostkę czasu przyjmujemy 1 rok i koiec roku azywamy chwilą. 1 i (m) d (m)

2 2 WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA Obece wartości ret pewych wyoszą: Przy wypłatach po 1 przez lat, dokoywaych od chwili (tj. w chwilach, 1,..., 1) (tzw. reta pewa z góry) ä = 1 + v + v 2 + v 1 = 1 v ; d Dla rety pewej z dołu (wypłaty w chwilach 1, 2,..., ) a = v + v v = 1 v ; i Dla m-krotej rety pewej z góry (wypłaty po 1/m, m razy w roku przez lat, od chwili ) ä (m) = 1 m + 1 m v1/m m v(m 1)/m = 1 v d (m) ; Dla m-krotej rety pewej z dołu (tak samo jak wyżej, ale od chwili 1/m) a (m) = 1 m v1/m m vm/m = 1 v i (m) Jeśli pierwsza wypłata rety astępuje w roku k, to retę azywamy odroczoą. Na przykład, w przypadku odroczoej o k lat rety beztermiowej z góry OW wyosi lub iaczej k ä = v k + v k = v k a, k ä = ä ä k, a w przypadku rety pewej z dołu a lat odroczoej o k lat k a = v k+1 + v k v +k = v k a = a +k a k. Podobe zależości zachodzą dla odroczoych ret m-krotych. Na przykład k ä (m) = v k ä (m) 2. Przepływy pieięże Dokoujemy ciągu wpłat lub wypłat przez jedakowych okresów. W roku k =, 1,..., dokoujemy wpłaty A k i wypłaty B k, a więc iwestycja w roku k wyosi C k = A k B k. Ciąg C, C 1,..., C azywamy przepływem pieiądza. Przy założeiu, że odsetki dopisywae są a końcu każdego roku (kapitalizacja z dołu) OW tego przepływu wyosi G = C j v j, j= atomiast jego ZW w chwili wyosi S = C j (1 + i) j. j=

3 MODELE MATEMATYCZNE W UBEZPIECZENIACH 3 Oczywiście S = (1 + i) G. W dalszych rozważaiach będziemy często żądać, aby spełioy był waruek rówoważości S =. Przykład 1. Bak propouje astępujący kotrakt. Osoba 55-letia wpłaca przez 1 lat składkę roczą Π z góry, a astępie od 65 roku życia otrzymuje roczą retę z góry przez 15 lat w wysokości 1. Obliczmy wielkość składki Π. Mamy tu przepływ pieiądza z = 24, A =... = A 9 = Π, A 1 =... = A 24 = oraz B =... = B 9 =, B 1 =... = B 24 = 1. ZW tego przepływu wyosi 9 24 S 24 = (1 + i) 24 j Π (1 + i) 24 j. j= j=1 Składkę Π obliczamy przyjmując założeie, że S 24 =, tz. wpłaty rówoważą wypłaty oraz zakładamy, że i = 5%. Stąd Π = 24 j=1 v j 9j= v j = Tak obliczoą składkę azywamy składką etto. Obliczeia te są wykoae przy założeiu, że daa osoba przeżyje astępe 24 lata. W dalszej części zobaczymy jak uwzględić losowość długości życia człowieka przy obliczaiu składki. 3. Przyszły czas życia 3.1. Ozaczeia i defiicje. Osobę, która ukończyła x lat życia, będziemy azywać x-latkiem i ozaczać symbolem (x). Jej przyszły czas życia, tz. od chwili x do chwili śmierci, będziemy ozaczać przez T x. Wartości T x są ieujeme, ale ie muszą być całkowite! Oczywiście T x dla daej osoby (x) żyjącej ie jest zae. Zakładamy zatem, że T x jest zmieą losową i że day jest jej rozkład (dystrybuata) F x (t) = P(T x t), t. Iaczej, F x (t) jest prawdopodobieństwem, że x-latek umrze przed upływem czasu t, tz. przed chwilą x + t. Będziemy zawsze zakładać, że F x ma gęstość f x, tz. że dla dowolych a b P(a T x b) = lub rówoważie b F x(t) = f x (t) dla prawie wszystkich t. Przez s x ozaczymy fukcję przeżycia s x (t) = P(T x > t) = a x f x (t)dt, f x (t)dt.

4 4 WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA Będziemy używać astępujących ozaczeń: prawdopodobieństwo, że (x) umrze przed upływem czasu t tq x = F x (t); prawdopodobieństwo, że (x) przeżyje jeszcze t lat Oczywiście t q x + t q x = 1. tp x = 1 F x (t) = s x (t); prawdopodobieństwo, że (x) przeżyje jeszcze s lat, a astępie umrze w ciągu czasu t s tq x = P(s < T x s + t) = F x (s + t) F x (s) = s+t q x s q x = s p x s+t p x ; prawdopodobieństwo, że (x) przeżyje koleje t lat, pod warukiem, że przeżyje ajpierw co ajmiej s lat oraz tp [x]+s = P(T x > s + t T x > s) = = 1 F x(s + t) 1 F x (s) przeciwe prawdopodobieństwo warukowe = s+t p x sp x, tq [x]+s = P(T x s + t T x > s) = = F x(s + t) F x (s) 1 F x (s) = s t q x sp x. Uwaga. Jeżeli jakiś ideks jest rówy 1, to moża go pomiąć, p. 1p x = p x, t 1q x = t q x. Przykład 2. Niech x = 5, t = 5 oraz s = 1. Wtedy: q x = q 5 ozacza prawdopodobieństwo, że osoba 5 letia umrze w ciągu kolejego roku; p x = p 5 ozacza prawdopodobieństwo, że osoba 5-letia przeżyje kolejy rok; t q x = 5 q 5 ozacza prawdopodobieństwo, że osoba 5 letia umrze przed osiągięciem 55 lat; t p x = 5 p 5 ozacza prawdopodobieństwo, że osoba 5 letia dożyje wieku 55 lat; s t q x = 1 5 q 5 ozacza prawdopodobieństwo, że osoba 5 letia umrze pomiędzy 6 a 65 rokiem życia; t q [x]+s = 5 q [5]+1 ozacza prawdopodobieństwo, że osoba 5 letia umrze przed osiągięciem 65 lat, pod warukiem, że dożyła oa 6 lat.

5 MODELE MATEMATYCZNE W UBEZPIECZENIACH 5 t p [x]+s = 5 p [5]+1 ozacza prawdopodobieństwo, że osoba 5 letia dożyje wieku 65 lat, pod warukiem, że dożyła oa 6 roku życia; Uwaga. t p x+s = 5 p 6 ozacza prawdopodobieństwo, że osoba 6 letia dożyje 65 roku życia. Jest to a ogół ie prawdopodobieństwo iż t p [x]+s = 5 p [5]+1, chociaż a pierwszy rzut oka mówią oe o tym samym: w obydwu przypadkach chodzi o przeżycie od 6 do 65 roku życia. Ale dotyczą oe różych populacji: 5 p 6 dotyczy 6-latków, a 5 p [5]+1 dotyczy 5-latków. Zachodzą astępujące rówości a więc s+tp x = s p x t p [x]+s s tq x = s p x t q [x]+s, k 1 kp x = p x i=1 p [x]+i. Wartością oczekiwaą przyszłego czasu życia T x azywamy e x = ET x = tf x (t)dt. Zakładamy, że e x < dla każdego x. Zauważmy, że a więc całkując przez części Ostateczie f x (t) = d( tp x ), dt e x = [ t t p x ] e x = + tp x dt. tp x dt. Natężeiem śmiertelości x-latka w chwili t liczoego od chwili obecej (tz. w chwili x + t) azywamy wielkość µ [x]+t = f x(t) 1 F x (t). Rozważmy prawdopodobieństwo warukowe śmierci (x) w krótkim przedziale czasu [t, t + h] pod warukiem, że (x) przeżyje do czasu t hq [x]+t = P(T x t + h T x > t) = F x(t + h) F x (t). 1 F x (t) Na mocy twierdzeia o wartości średiej mamy F x (t + h) F x (t) = hf x (t + θh),

6 6 WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA dla pewego θ [, 1], a więc hq [x]+t h = f x(t + θh) 1 F x (t). Jeżeli gęstość jest ciągła w p-cie t, to dostajemy hq [x]+t lim = µ [x]+t h + h Zatem prawdopodobieństwo śmierci x-latka w krótkim przedziale czasu [t, t + h] jest proporcjoale do długości tego przedziału ze współczyikiem proporcjoalości µ [x]+t. Dalej zauważmy, że a więc oraz µ [x]+t = 1 d( t p x ) tp x dt = d(log tp x ) dt ( t ) tp x = exp µ [x]+s ds t F x (t) = s p x µ [x]+s ds. Iaczej mówiąc atężeie śmiertelości wyzacza rozkład przyszłego czasu życia. Obciętym czasem życia azywamy zmieą losową K x = T x, gdzie a ozacza część całkowitą liczby rzeczywistej a, czyli ajwiększą liczbę całkowitą iewiększą iż a. Iaczej a = k wtedy, i tylko wtedy, gdy k a < k + 1. Zatem K x ozacza liczbę ukończoych przyszłych lat życia x-latka. Fukcja prawdopodobieństwa zmieej losowej K x daa jest wzorem P(K x = k) = P(k T x < k + 1) = k 1 q x = k p x q [x]+k. Zatem oczekiway obcięty przyszły czas życia jest day wzorem e x = kp(k x = k) = k k p x q [x]+k. K x jest zmieą losową o wartościach całkowitych ieujemych, a więc jej wartość oczekiwaą moża rówież obliczyć ze wzoru e x = P(K k) = kp x.

Tablice trwania życia

Tablice trwania życia ROZDZIAŁ 3 Tablice trwania życia 1 Przyszły czas życia Osobę, która ukończyła x lat życia, będziemy nazywać x-latkiem i oznaczać symbolem x Jej przyszły czas życia, tzn od chwili x do chwili śmierci, będziemy

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część I. Matematyka finansowa Komisja Egzamiacyja dla Aktuariuszy XXXVI Egzami dla Aktuariuszy z 0 paździerika 2005 r. Część I Matematyka fiasowa Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Niech dur() ozacza duratio

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Procent składany wiadomości podstawowe

Procent składany wiadomości podstawowe Procet składay wiadomości podstawowe Barbara Domysławska I Liceum Ogólokształcące w Olecku Procet prosty to rodzaj oprocetowaia polegający a tym, że odsetki doliczae do złożoego wkładu ie podlegają dalszemu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

Strategie finansowe przedsiębiorstwa

Strategie finansowe przedsiębiorstwa Strategie fiasowe przedsiębiorstwa Grzegorz Michalski 2 Różice między fiasami a rachukowością Rachukowość to opowiadaie [sprawozdaie] JAK BYŁO i JAK JEST Fiase zajmują się Obecą oceą tego co BĘDZIE w PRZYSZŁOŚCI

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie

ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

Ubezpieczenia na życie

Ubezpieczenia na życie ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

Wykład 11 ( ). Przedziały ufności dla średniej

Wykład 11 ( ). Przedziały ufności dla średniej Wykład 11 (14.05.07). Przedziały ufości dla średiej Przykład Cea metra kwadratowego (w tys. zł) z dla 14 losowo wybraych mieszkań w mieście A: 3,75; 3,89; 5,09; 3,77; 3,53; 2,82; 3,16; 2,79; 4,34; 3,61;

Bardziej szczegółowo

Składki i rezerwy netto

Składki i rezerwy netto ROZDZIAŁ 6 Składki i rezerwy netto 1 Składki netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową Polisa taka zawiera szczegółowe warunki

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej. Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej. Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 6: SKŁADKI OKRESOWE Składki okresowe netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową

Bardziej szczegółowo

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n

SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

1% wartości transakcji + 60 zł

1% wartości transakcji + 60 zł Procet.. Wysokość prowizji, którą kliet płaci w pewym biurze maklerskim przy każdej zawieraej trasakcji kupa lub sprzedaży akcji jest uzależioa od wartości trasakcji: Wartość trasakcji do 500 zł od 500.0

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

UBEZPIECZENIA NA ŻYCIE

UBEZPIECZENIA NA ŻYCIE UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

Szeregi liczbowe. 15 stycznia 2012

Szeregi liczbowe. 15 stycznia 2012 Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

MATEMATYKA FINANSOWA - PROCENT SKŁADANY 2. PROCENT SKŁADANY

MATEMATYKA FINANSOWA - PROCENT SKŁADANY 2. PROCENT SKŁADANY 2. PROCENT SŁADANY Zasada procetu składaego polega a tym, iż liczymy odsetki za day okres i doliczamy do kapitału podstawowego. Odsetki za astępy okres liczymy od powiększoej w te sposób podstawy. Czyli

Bardziej szczegółowo

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n. Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

OGÓLNE RENTY ŻYCIOWE

OGÓLNE RENTY ŻYCIOWE OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę).

Rys.. Cash flow wypływów. Rys.. Cash flow: wypływów (strzałki skierowane w dół) i wpływów (strzałki skierowane w górę). 3 WARTOŚĆ PIENIĄDZA W CZASIE Ziea watość pieiądza w czasie to ieodłączy atybut pieiądza właściwy ie tylko aszy czaso W teoii fiasów, okesowe płatości azywa się stuieie pieiędzy, pzepływe pieiędzy lub z

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo