Funkcja generująca rozkład (p-two)
|
|
- Jacek Bukowski
- 5 lat temu
- Przeglądów:
Transkrypt
1
2 Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są zmieymi losowymi przyjmującymi g g p p warości całowie ieujeme o Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi o warościach całowiych ieujemych, oraz iech S wówczas: Dowód: g g S gs E E E g [ ] [ ] Wiose: Jeśli wszysie zmiee,,..., podlegają emu samemu rozładowi, wedy: g g S M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-
3 Fucja geerująca rozład (p-wo FGP geeruje prawdopodobieńswo, poieważ: ( g... + P Twierdzeie: iech będzie ieujemą zmiea losową o warościach całowiych oraz iech E < dla pewego,,, wedy ( [ ] E... + g Wiose: W szczególości dla i mamy E E < E[ ] g M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-3 P( [ ] [ ] < V g + g g Przyład: FGP dla rozładu Berouliego: ( g p + p q + p Przyład: FGP dla rozładu dwumiaowego: g p q q p ( + [ ] g p [ ] ( g! E V g + g ( g pq [ ] g p [ ] E V g + g ( g pq
4 Fucja geerująca rozład (p-wo Przyład: FGP dla rozładu geomeryczego ( P pq,,,... zajdujemy FGP: p g pq p ( q dla < q, q Zajdziemy FGP dla sumy iezależych zmieych z rozładu geomeryczego (Fs: P S S oraz sam rozład p-wa: ( p gs g q ( g S p q ( q! +! + ( +! + p q p q,,,... (!! Dooując zmiay idesu, orzymujemy rozład ujemy dwumiaowy w sadardowej posaci: j j + j P( S j p q, j, +,... M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-4
5 Fucja geerująca mome Defiicja: Fucją geerującą mome (FGM dla zmieej losowej azywamy fucję zmieej rzeczywisej posaci: pod waruiem, że isieje sała h> aa, że powyższa warość oczeiwaa isieje dla [ ] ψ E Twierdzeie: (o jedozaczości Jeśli i są zmieymi losowymi dla órych w pewym obszarze isieją FGM, o ψ ( ψ ( f ( x f ( y M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-5 Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi dla órych isieją FGM, oraz iech S wówczas: Dowód: < h ψ ( ψ ( ( ψ S E e E e E e ψ Wiose: Jeśli wszysie zmiee,,..., podlegają emu samemu rozładowi, wedy: ψ S ψ S e [ ] [ ]
6 Fucja geerująca mome ψ ( Twierdzeie: iech będzie zmieą losową, dla órej FGM isieje dla < h, gdzie h >, wedy isieją wszysie momey zmieej i są oreśloe przez: E Dowód (zmiea ciągła: d ψ la,,... d [ ] d + + x x r x x x x e f ( x dx < x > mamy e f ( x dx < i e f ( x dx < Poieważ dla dowolego r > zachodzi x / e dla x więc: + x x + r r r r x f ( x dx x f ( x dx + x f ( x dx + x f ( x dx x x x + x x r x ( e f x dx + x P x + e f x dx < Różiczując FGM -roie dosajemy: + + x e f x dx x f x dx E ( x ( [ ] ψ ψ M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-6
7 Fucja geerująca mome Przyład: FGM dla rozładu dwumiaowego e p ( p ( pe p ψ + ( E[ ] ψ pe + p pe ψ p ( ( E ψ p + p Przyład: FGM dla rozładu wyładiczego ψ pe + p pe + e + p pe x x x e e λ dx e λ λ ψ λ λ dx, dla <λ λ / λ (! λ [ ]! ψ E + ( λ λ! ψ + / λ λ λ! M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-7 [ ]!! Ogólie: ψ [ ] [ ] E e E + + E
8 Twierdzeie: Jeśli jes FGM zmieej, o FGM zmieej daa jes przez Dowód: Fucja geerująca mome ψ ( ψ [ ] ( α +β e β ψ ( α α +β α +β [ ] α β β [ ] ψ ψ α E e E e E e e e Przyład: FGM dla rozładu ormalego x / (, exp, dla - < Defiicja: Fucją geerującą mome (FGM dla weora losowego (,, azywamy fucję x ψ e dx e < π µ, σ pod waruiem, że isieją sałe h, h,, h > aie, że powyższa warość oczeiwaa isieje dla,,,, ( [ e ] ψ,...,,..., E Aby zaleźć FGM dla rozładu ormalego wyoujemy rasformację zmieej i orzysamy z powyższego wierdzeia: < h µ / µ+σ dla σ +µ ψ e ψ σ e, - < < M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-8
9 Własości: Fucja charaerysycza Defiicja: Fucją charaerysyczą zmieej losowej azywamy fucję zmieej rzeczywisej posaci: i i [ ] ϕ E e E e ϕ i [ ] [ ] ϕ E e E cos + i si ( ϕ E[ cos( i si( ] E cos( + i si( ϕ [ ] Rozład zm. l. jes symeryczy wedy i ylo wedy gdy f. ch. jes rzeczywisa i [ ] Twierdzeie: (o jedozaczości iech i będą zmieymi losowymi. Wedy: f ( x f ( y ϕ ϕ Przyład: Fucja charaerysycza dla rozładu dwumiaowego i e p ( p ( pe i p ϕ + Przyład: Fucja charaerysycza dla rozładu wyładiczego i x e e dx e dx ix x λ λ λ ϕ λ λ λ i ϕ E e ϕ ϕ ϕ M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-9
10 Fucja charaerysycza Twierdzeie: iech będzie zmieą losową o dysrybuacie F i fucji charaerysyczej ϕ. Jeśli F jes ciągła w puach a i b, o wedy: T ib ia e e F b F a lim ϕ d T π i T + ϕ d < + ix f ( x e ϕ d Twierdzeie: Jeśli spełioy jes warue o wówczas zmiea ma rozład ciągły o gęsości: Zajdujemy fucję gęsości p-wa: π Przyład: Zajdź gęsość p-wa zmieej losowej, órej fucja charaerysycza daa jes przez Sprawdzamy czy fucja charaerysycza jes całowala: + + ϕ d e 3 d e 3 d ϕ exp( i 3 < 3 3 f ( x d exp( ix + i π 3 π ( x + 9 M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8- +
11 Fucja charaerysycza Twierdzeie: Jeśli zmiea losowa ma rozład dysrey o wówczas: i p P K lim e ϕ d T T T i Przyład: Zajdź rozład p-wa, órego fucja charaerysycza ma posać ϕ e + + Sprawdzamy czy fucja charaerysycza jes całowala: ϕ d d Poieważ mamy do czyieia ze zmieą dysreą, więc: T T [ exp ] [ i ] p lim exp i d lim T T T T i( T si( T( { lim dla T T( dla Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi dla órych isieją fucje ch., oraz iech S wówczas: M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8- T ϕ ϕ Twierdzeie: Jeśli jes f. ch. zmieej, o f.ch. zmieej jes przez ϕ ( ϕ i e β ϕ ( α S T α +β dae
12 Fucje charaerysycze Przyład: Zajdź rozład sumy dwóch iezależych zmieych losowych z rozładu Poissoa o paramerach µ i µ. Twierdzeie: Jeśli isieje -y mome zmieej losowej o jej fucja charaerysycza jes -roie różiczowala i zachodzi: [ ] d m E ϕ dla,,..., i d i E! i ( µ e i i µ ϕ e e µ e µ exp( µ e!! exp ( exp ( exp( i i i ϕ ϕ l µ e µ e µ +µ e Z posaci fucji charaerysyczej wyia, że rozład sumy iezależych zmieych losowych z rozładu Poissoa o paramerach µ i µ podlega rozładowi Poissoa o paramerze. µ +µ [ ] O dla ϕ + + Uwaga: F. charaerysycza isieje dla dowolego rozładu, w szczególości dla aiego, óry ie posiada wszysich momeów. M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-
13 Radomizacja i sumy losowe Przyład: (oyuacja przyładu ze sroy 6- ( p gdzie, λ ( g e µ Korzysając z FGP oraz wierdzeia o waruowej warości oczeiwaej orzymujemy: M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-3 ( + g q p λ ( [ ] g E E ( q p E E + g ( q + p e e A więc zmiea losowa podlega rozładowi Poissoa z paramerem λp. λ q + p p Twierdzeie: iech,,..., będą iezależymi, ieujemymi, zmieymi losowymi o ym samym rozładzie oraz iech będzie ieujemą zmieą losową iezależą od,,...,. Defiiujemy S oraz dla S , wówczas: Dowód: g g g S S [ S ] S gs E e E e P E e P S [ ] ( P E e P g g g
14 Losowe sumy zmieych losowych Twierdzeie: Załóżmy, że spełioe są warui poprzediego wierdzeia. a Jeśli E[ ] < i E[ ] < E S [ ] [ ] E E b Jeśli dodaowo V[ ] < i V[ ] < V S [ ] [ ] [ ] E V + E V Dowód (a: ( [ ] [ ] g S g g g S g g g E S E E (b g ( g g ( g + g g g ( ( S E[ ( ] E[ ] + E E [ ] [ ] V S g S + g S g S [ ] E[ ( ] ( E[ ] + E[ ] E[ ( ] + E[ ] E[ ] ( E[ ] E[ ] [ ] E[ ] V[ ] + E[ ] V M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-4
15 Losowe sumy zmieych losowych Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi o ym samym Rozładzie, dla órych isieje FGM dla < h gdzie h>. iech będzie ieujemą zmieą losową o warościach całowiych, iezależą od,,...,. Defiiujemy S oraz dla, wówczas: S ϕ g ϕ S g ψ S Przyład: iech,,... będą iezależymi zmieymi z rozładu wyładiczego oraz iech Fs( p będzie iezależa od,,...,. Zajdź rozład S λ p ( pλ S g λ Fs( p pq ψ ψ ψ Exp pλ λ p q λ λ p p λ p p λ Ge( p pq ψ S g ψ p + q λ p p q λ λ λ Twierdzeie: iech,,..., będą iezależymi zmieymi losowymi o ym samym rozładzie oraz iech będzie ieujemą zmieą losową o warościach całowiych, iezależą od,,...,. Defiiujemy S oraz dla S , wówczas: M. Przybycień Rachue prawdopodobieńswa i saysya Wyład 8-5 ψ
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Bardziej szczegółowon k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Bardziej szczegółowoWykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
Bardziej szczegółowoWyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
Bardziej szczegółowoErlanga. Znajdziemy rozkład czasów oczekiwania na n-te zdarzenie. Łączny czas oczekiwania. na n zdarzeń dany jest przez: = u-v i t 2.
Rozład Erlaga Zajdziem rozład czasów oczeiwaia a -e zdarzeie. Łącz czas oczeiwaia a zdarzeń da jes przez: M. Przbcień Rachue prawdopodobieńswa i sasa ( (- gdzie E ; λ λ exp λ Podobie zajdujem: E ( ; E(
Bardziej szczegółowoTwierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Bardziej szczegółowoPodstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Bardziej szczegółowoWstęp. zbiór wszystkich zdarzeń elementarnych (sample space), S zbiór zdarzeń, (events), P prawdopodobieństwo (probability distribution).
Wstęp,, S P przestrzeń probabilistycza (Probability space), zbiór wszystich zdarzeń elemetarych (sample space), S zbiór zdarzeń, (evets), P prawdopodobieństwo (probability distributio). P : S R ZMIENNA
Bardziej szczegółowoM. Przybycień Rachunek prawdopodobieństwa i statystyka Wykład 7-2
Ważiejsze rozłady -wa Rozłady zmieej losowej dysreej: rozład łasi (jedosajy) rozład dwuuowy (Beroulliego) rozład dwu- i wielomiaowy rozład ujemy dwumiaowy (Pascala) rozład geomeryczy rozład hiergeomeryczy
Bardziej szczegółowo1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Bardziej szczegółowoModele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej
Moele zmieości akywów ryzykowych Moel muliplikaywy Rozkła logarymiczo-ormay Paramery siaki wumiaowej Moel muliplikaywy zmieości akywów Rekurecyjy moel muliplikaywy: (=, (k+ = (k u(k, k=,, Cea akywa w chwili
Bardziej szczegółowo21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Bardziej szczegółowo1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
Bardziej szczegółowoNiezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowoZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Bardziej szczegółowoEKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Bardziej szczegółowoEstymatory nieobciążone o minimalnej wariancji
Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoPobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Bardziej szczegółowosą niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Bardziej szczegółowooznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Bardziej szczegółowoStatystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 6.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Własości rozkładu ormalego Cetrale twierdzeie graicze Fukcja charakterystycza
Bardziej szczegółowoLista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoθx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Bardziej szczegółowoZdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoD:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.
D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań
Bardziej szczegółowoP ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.
Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowo1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Bardziej szczegółowoTwierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.
15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia
Bardziej szczegółowoZadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Bardziej szczegółowo16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Bardziej szczegółowoPodprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń
Bardziej szczegółowoStatystyczne aspekty emisji, propagacji i detekcji. promieniowania jądrowego
Saysycze aspey emisji, propagacji i deecji promieiowaia jądrowego Rysue 5. przedsawia iedawe wyii esperymeu ATLAS w laboraorium CERN poazujące rozład zw. masy iezmieiczej (m γγ ) dwóch fooów. Puy uładają
Bardziej szczegółowoDwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Bardziej szczegółowoZmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
Bardziej szczegółowoRelacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Bardziej szczegółowo1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Bardziej szczegółowotek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
Bardziej szczegółowo2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)
Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza
Bardziej szczegółowoĆwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Bardziej szczegółowoTwierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Bardziej szczegółowoFUNKCJE ZMIENNYCH LOSOWYCH. Uwagi o rozkładzie funkcji zmiennej losowej jednowymiarowej.
L.Kowals Fucje zmeych losowych FUNKCJE ZMIENNYCH LOSOWYCH Uwag o rozładze fucj zmeej losowej jedowymarowej. Jeśl - soowa, o fucj prawdopodobeńswa P( x ) p, g - dowola o fucja prawdopodobeńswa zmeej losowej
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowoWykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Bardziej szczegółowoNr zadania Σ Punkty:
Kolokwim z krs Modele saysyczne niezawodności sysemów ROZWIĄZANIA Do wykonania jes 5 zadań. W smie, można zyskać 5 pnków. Na napisanie kolokwim mają Pańswo 7 min. Proszę wykonywać każde zadanie na osobnej
Bardziej szczegółowo1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Bardziej szczegółowoMIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Bardziej szczegółowoEkonometryczne modele nieliniowe
Eonomeryczne modele nieliniowe Wyład Doromił Serwa Zajęcia Wyład Laoraorium ompuerowe Prezenacje Zaliczenie EGZAMI 50% a egzaminie oowiązują wszysie informacje przeazane w czasie wyładów np. slajdy. Aywność
Bardziej szczegółowoSygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
Bardziej szczegółowoSTATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Bardziej szczegółowoMarek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa
Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Bardziej szczegółowoP = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Bardziej szczegółowonpq jest funkcją gęstości zmiennej losowej X? Po wyznaczeniu k proszę znaleźć: dystrybuantę, kwartyl drugi,
Zadaie aa jest fucja gęstości zmieej losowej X: 9 8 Wyzacz: F (X ; Q ; ; ( X ; 9 9 P X P Zadaie ( Statystya II, X a b F( b F( a X e! P m ( ; m E( X ( X V ( X X R P ( X R ( X V ( X jest fucją gęstości zmieej
Bardziej szczegółowoz przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Bardziej szczegółowoZnajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Bardziej szczegółowo3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Bardziej szczegółowoMetody Lagrange a i Hamiltona w Mechanice
Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /
Bardziej szczegółowo7. Różniczkowanie. x x. f (x 0 ) = df(x). dx x=x0 Pierwsze oznaczenie pochodzi od Lagrange a, a drugie od Leibniza.
7 Różiczowaie Niech będzie daa fucja f oreśloa w pewym otoczeiu putu x 0 R Mówimy, że f jest różiczowala w x 0 (ma w x 0 pochodą), jeśli iloraz różicowy x f(x) f(x 0) x x 0 ma w pucie x 0 graicę Ozaczamy
Bardziej szczegółowoELEMENTY SYSTEMÓW KOLEJKOWYCH
.Kowalsi Wybrae zagadieia z rocesów sochasyczych EEMENTY SYSTEMÓW KOEJKOWYCH WYBRANE ZAGADNIENIA uca Kowalsi Warszawa 8 .Kowalsi Sysemy Obsługi ieraura:.kowalsi, maeriały dydaycze z rocesów sochasyczych.
Bardziej szczegółowoTeoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
Bardziej szczegółowoWykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
Bardziej szczegółowon n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc
5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X
Bardziej szczegółowoWykład z Rachunku Prawdopodobieństwa II
Matematyka stosowaa Wykład z Rachuku Prawdopodobieństwa II Adam Osękowski ados@mimuw.edu.pl http://www.mimuw.edu.pl/~ados Uiwersytet Warszawski, 2011 Streszczeie. Celem iiejszego skryptu jest wprowadzeie
Bardziej szczegółowoAnalityczne reprezentacje sygnałów ciągłych
Analiyczne reprezenacje sygnałów ciągłych Przedsawienie sygnału w posaci analiycznej: umożliwia uproszczenie i unifiację meod analizy, pozwala na prosszą inerpreację nieórych jego cech fizycznych. W eorii
Bardziej szczegółowoZadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Bardziej szczegółowoAnaliza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski
Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz
Bardziej szczegółowoWykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2
Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Bardziej szczegółowoWYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoStatystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3
Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 5 4.03.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Metody Mote Carlo Najważiejsze rozkłady prawdopodobieństwa Metoda akceptacji-odrzuceń
Bardziej szczegółowoStatystyka Inżynierska
aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości
Bardziej szczegółowoCharakterystyki czasowe i częstotliwościowe układów automatyki. Podczas ćwiczenia poruszane będą następujące zagadnienia:
Warszawa 7 Cel ćwiczeia rachuowego Podczas ćwiczeia poruszae będą asępujące zagadieia: obliczaie odpowiedzi impulsowej i soowej uładu; wyzaczeia charaerysy częsoliwościowych (ampliudowo-fazowej oraz logarymiczej:
Bardziej szczegółowo40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
Bardziej szczegółowoĆwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
Bardziej szczegółowoSymulacyjna metoda doboru optymalnych parametrów w prognostycznych modelach wygładzania wykładniczego
Zbigiew Tarapaa Symulacyja meoda doboru opymalych paramerów w progosyczych modelach wygładzaia wyładiczego Wydział Cybereyi Wojsowej Aademii Techiczej w Warszawie Sreszczeie W aryule zaprezeowao symulacyją
Bardziej szczegółowoma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 5 3.03.08 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 07/08 Metody Mote Carlo Najważiejsze rozkłady prawdopodobieństwa Metoda akceptacji-odrzuceń
Bardziej szczegółowoWYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.
7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie
Bardziej szczegółowoWykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Bardziej szczegółowoa 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Bardziej szczegółowoAnaliza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 5.03.09 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 08/09 Trasformacje liiowe Propagacja iepewości Trasformacje liiowe Najczęściej,
Bardziej szczegółowo