RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
|
|
- Judyta Irena Janowska
- 5 lat temu
- Przeglądów:
Transkrypt
1 RÓWNANIA RÓŻNICZKOWE WYKŁAD
2 Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest klasy C dla każdego N. Twierdzeie Jeżeli fukcja y = f () jest klasy C w pewym otoczeiu U(, h) puktu, to dla każdego z tego otoczeia zachodzi wzór Taylora gdzie f ( ) ''' f '( ) f ''( ) f ( ) 3 f ( ) ( ) ( ) ( )... R ( )!! 3!. ( ) f ( c) R ( ) ( )! azywamy resztą w postaci Lagrage a, c U(, h).
3 Szeregi potęgowe Defiicja Jeżeli fukcja y = f () jest klasy C w pewym otoczeiu U(, h) puktu, to szereg potęgowy f ( )! ''' ( ) ) ) f ) 3 ( ) f ( ) ( ) ( ) ( ) f '(! f ''(! ( 3!... azywamy szeregiem Taylora tej fukcji o środku w pukcie. Jeżeli =, to szereg te azywamy szeregiem Maclauria. Uwaga Ze zbieżości szeregu ie wyika, że jego suma jest rówa tej fukcji. Np. dla fukcji f ( ) e dla dla f () () =, więc suma szeregu Maclauria jest fukcją zerową. 3
4 Szeregi potęgowe Wykres fukcji f ( ) e dla dla
5 Szeregi potęgowe Twierdzeie Jeżeli fukcja y = f () jest klasy C w pewym otoczeiu U(, h) puktu, ( ) i dla każdego U(, h) lim R ( ) f ( c) (gdzie R ozacza -tą resztę ( ) ( )! we wzorze Taylora), to Uwaga Waruek lim R ograiczoe tz. ( ) f ( ) f ( ) ( ) dla U (, h)! ( ) jest spełioy jeśli wszystkie pochode fukcji f są wspólie ( ) M N {} U(, h) f ( ) M. 5
6 Szeregi potęgowe Twierdzeie (o jedozaczości rozwiięcia w szereg potęgowy) Jeżeli fukcja y = f () jest w pewym otoczeiu U(, h) puktu, sumą szeregu potęgowego to f a ( ) a ( ) ( ) f ( ),,,,...! 6
7 Szeregi potęgowe Rozwiięcia fukcji w szeregi potęgowe wyzacza się: Przez zalezieie wzoru a pochodą dowolego rzędu rozwijaej fukcji, Przez wykorzystaie zaych rozwiięć fukcji i wykorzystaie stosowych twierdzeń o szeregach potęgowych. Przykłady rozwijaia fukcji w szeregi potęgowe w załączoym pliku: Szereg_potegowy_przyklady.doc
8 Szeregi potęgowe Rozwiięcia do zapamiętaia 3!...!... 3!!! e
9 Defiicja Wielomiaem trygoometryczym azywamy fukcję postaci gdzie a, a T, b N ( ) R. N a si a cos b Dziedzią wielomiau trygoometryczego jest zbiór liczb rzeczywistych. Jest o fukcją klasy C, a R. Jest fukcją okresową o okresie podstawowym. Uwaga Niejawymi przykładami wielomiaów trygoometryczych są fukcje C ( ) cos cos oraz S( ) si cos si 9
10 Defiicja Szeregiem trygoometryczym azywamy szereg fukcyjy postaci gdzie a, a, b a a cos b si są stałymi rzeczywistymi. Poieważ jest to szereg fukcyjy mają do iego zastosowaie pozae twierdzeia dotyczące szeregów fukcyjych p. jeśli szereg jest zbieży jedostajie, to jego suma jest fukcją ciągłą (wyrazy szeregu są fukcjami ciągłymi!). Jeżeli szereg jest zbieży, to jego suma jest fukcją okresową o okresie podstawowym. Twierdzeie Jeżeli szereg liczbowy, a b jest zbieży, to szereg trygoometryczy S() jest zbieży jedostajie a R. f ( ) a cos b si a Dowód wyika z tw. Weierstrassa ( b ).
11 Lemat Zachodzą rówości: ( N) si d ( N) cos d ( m, N) si m cos d ( m, N) ( m, N) dla m si m si d dla m dla m cosm cosd dla m (Udowodić powyższe rówości)
12 Twierdzeie Jeżeli fukcja f() jest sumą jedostajie zbieżego szeregu trygoometryczego a b si f ( ) a cos to jego współczyiki wyrażają się wzorami,, 3... a a b f ( ) d f ( )cosd f ( )si d Powyższe związki między fukcją graiczą i współczyikami szeregu otrzymujemy całkując szeregi odpowiadające fukcjom f(), f()cos oraz f()si, N wyraz po wyrazie i wykorzystując lemat.
13 Niech f będzie dowolą fukcją całkowalą w przedziale [-,]. Defiicja Szeregiem Fouriera fukcji f, całkowalej w przedziale [-,] azywamy szereg trygoometryczy, którego współczyiki, zwae współczyikami Fouriera, zostały wyzaczoe wg wzorów Eulera-Fouriera: a a b f ( ) d f ( )cos d f ( )si d Jea Baptiste Joseph Fourier (768-83) Leohard Euler (77-783) 3
14 Szereg Fouriera może być skostruoway dla każdej fukcji f, dla której istieją całki występujące we wzorach defiiujących współczyiki Fouriera. Zapisujemy to wzorem Uwaga f ( ) ~ a a cos b si Wyzaczoy w te sposób szereg ie musi być zbieży. W przypadku zbieżości jego suma ie musi być rówa fukcji f. Waruki wystarczające a to by suma szeregu Fouriera była rówa fukcji, a podstawie której szereg został skostruoway, azywae są warukami Dirichleta. 4
15 Niech f() będzie fukcją ograiczoą a przedziale (a, b). Defiicja Fukcja f() jest przedziałami mootoicza a (a, b) wtedy i tylko wtedy, gdy przedział te moża podzielić a skończoą liczbę podprzedziałów, wewątrz których fukcja jest mootoicza. Defiicja Fukcja f() spełia w przedziale [-, ] waruki Dirichleta wtedy i tylko wtedy, gdy:. jest ograiczoa i przedziałami mootoicza a (-, ),. ma co ajwyżej skończoą liczbę puktów ieciągłości i w każdym pukcie, w którym fukcja ie jest ciągła spełioy jest waruek f ( ) ( f ( ) f ( )) gdzie f ( +) i f ( +) ozaczają odpowiedio graicę prawo i lewostroą fukcji f w pukcie. 3. a końcach przedziału spełioy jest waruek f ( ) f ( ) ( f ( ) f ( )) 5
16 Przykład Wykres fukcji spełiającej waruki Dirichleta f () - O Twierdzeie (Dirichleta) Jeżeli fukcja f() spełia w przedziale [-, ] waruki Dirichleta, to w każdym pukcie tego przedziału jest sumą swojego szeregu Fouriera. 7
17 Przykład Rozwiąć w szereg Fouriera fukcję f () = Wyzaczamy współczyiki szeregu Fouriera. Fukcja jest ieparzysta, zatem a = i a m = dla m N. a przedziale (-, ). Szereg Fouriera fukcji f () = a przedziale (-, ) jest day wzorem Uwaga Z kryterium Dirichleta wyika, że te szereg jest zbieży do f a całym przedziale otwartym (-, ) Na końcach przedziału suma szeregu wyosi zgodie z kryterium Dirichleta zero (!). 8
18 Przykład (c. d.) S ( ) ( ) k si k k
19 Przykład (c. d.) S ( ) ( ) k si k k
20 Przykład (c. d.) S 5 5 ( ) ( ) k si k k
21 Przykład Aproksymacja sygału prostokątego za pomocą pierwszych 4 wyrazów szeregu Fouriera = = = 3 = 4
22 Trygoometryczy szereg Fouriera - aimacja
23 Uwagi praktycze związae z wyzaczaiem szeregów Fouriera. Całki występujące we wzorach a współczyiki Fouriera zazwyczaj oblicza się metodą całkowaia przez części.. Warto zapamiętać si, cos ( ) N, N 3. W trakcie obliczeń wykorzystać ieparzystość, bądź parzystość fukcji (o ile występuje) dla fukcji ieparzystej a a b f ( ) si d dla fukcji parzystej a f ( )cos d b 4. Należy pamiętać o warukach Dirichleta przy wyzaczaiu sumy szeregu. 4
24 Wyzaczaie współczyików Fouriera fukcji ieparzystej f () a a f ( ) d (ieparzysta) (ieparzysta) f ( t)cos d (parzysta) b f ( )si d (ieparzysta) (ieparzysta) (parzysta) f ( )si d (ieparzysta)
25 Wyzaczaie współczyików Fouriera fukcji parzystej f () a f ( )cos d (parzysta) (parzysta) f ( )cos d b f ( )si d (parzysta) (ieparzysta) (parzysta) (ieparzysta)
26 Przykłady rozwijaia fukcji w szeregi Fouriera w załączoym pliku: Szereg_Fouriera_przyklady.doc
27 8 Jeżeli f jest fukcją okresową o okresie l, to jej współczyiki Fouriera wyzaczamy z wzorów l l l l l l d l f l b d l f l a d f l a )si ( )cos ( ) ( Wzory te otrzymujemy w wyiku liiowej trasformacji zmieych wg wzoru l y przekształcającej przedział [-l, l] w przedział [-, ].
28 Szereg Fouriera ma wówczas postać f ( ) ~ a a cos b si 9
29 DZIĘKUJĘ ZA UWAGĘ
30 Szeregi potęgowe
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011
Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.
I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n
I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.
a 1, a 2, a 3,..., a n,...
III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy
Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
Ciągi liczbowe wykład 3
Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych
3. Funkcje elementarne
3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Szeregi. a n = a 1 + a 2 + a 3 + (1) a k (2) s n = k=1. lim s n = S,
Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Szeregi. Szeregi liczbowe Defiicja. Szeregiem liczbowym azywamy wyrażeie a = a + a + a 3 + () Liczby a, =,,... azywamy wyrazami szeregu. Natomiast
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
1 Pochodne wyższych rzędów
1 Pochode wyższych rzędów 1.1 Defiicja i przykłady Def. Drugą pochodą fukcji f azywamy pochodą pochodej tej fukcji. Trzecia pochoda jest pochodą drugiej pochodej; itd. Ogólie, -ta pochoda fukcji jest pochodą
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
MATEMATYKA cz. 4 Szeregi funkcyjne i równania róŝniczkowe zwyczajne
Ja Nawrocki MATEMATYKA cz. 4 Szeregi fukcyje i rówaia róŝiczkowe zwyczaje Politechika Warszawska 010 Politechika Warszawska Wydział Samochodów i Maszy Roboczych Kieruek "Edukacja techiczo iformatycza"
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
1. Granica funkcji w punkcie
Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VI Przekształcenia całkowe. Szereg Fouriera. l l l l. maja okres. l l
Wykład VI Przekształceia całkowe. Szereg Fouriera. 6. Szereg Fouriera. 6.. Wieomia trygoometryczy w postaci rzeczywistej. Wieomiaem trygoometryczym -tego stopia azywamy sumę: a π π f = + a cos + b + π
8. Jednostajność. sin x sin y = 2 sin x y 2
8. Jedostajość Mówimy, że fukcja f : I R spełia waruek Lipschitza ze stałą C > 0, jeśli fx) fy) C x y, x, y I. 8.. Przykład. a) Taką fukcją jest p. si : R [, ]. Rzeczywiście, si x si y = 2 si x y 2 cos
CAŁKA NIEOZNACZONA. F (x) = f(x) dx.
CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trgoometrcze. wkład z MATEMATYKI Automatka i Robotka sem. II, rok ak. 2009/200 Katedra Matematki Wdział Iformatki Poitechika Białostocka Szeregi iczbowe Defiicja.. Niech(a
Jarosław Wróblewski Analiza Matematyczna 2 (LUX), lato 2017/18. a n n = 10.
Czy istieje ciąg (a ) taki, że (podać przykład lub dowieść, że ie istieje) : 576. a > 1 dla ieskończeie wielu, a > 0, szereg a jest zbieży. N 577. a = 1 2 dla ieskończeie wielu, a = 10. 578. a 2 = 1 N,
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.
Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako
METODY NUMERYCZNE dr inż. Mirosław Dziewoński
Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej
Analiza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).
Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic
1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Szeregi liczbowe. 15 stycznia 2012
Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i
Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-)
Odpowiedzi do zadań z szeregów, cz I. Zauważoe błędy bardzo proszę zgłaszać mailem lub a ćwiczeiach. Z góry dziękuję :-. a +, wsk. skorzystać z rówości a b a b, astępie a+b wyciągąć ajwyższe potęgi z liczika
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Materiały do ćwiczeń z Analizy Matematycznej I
Materiały do ćwiczeń z Aalizy Matematyczej I 08/09 Maria Frotczak Ludwika Kaczmarek Katarzya Klimczak Maria Michalska Beata Osińska-Ulrych Tomasz Rodak Adam Różycki Grzegorz Skalski Staisław Spodzieja
Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań
Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p
Analiza matematyczna. Robert Rałowski
Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................
Twierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18
dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze
Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów
Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
> 1), wi c na mocy kryterium porównawczego szereg sin(n n)
.65. si() W szeregu tym wyst puj wyrazy dodatie i ujeme, ale ie a przemia. Zbadajmy wi c szereg: si() zªo»oy z warto±ci bezwzgl dych wyrazów szeregu daego w zadaiu. Poiewa» si(), wi c si() = Po prawej
7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,
7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba
dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że
KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19
47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
[wersja z 5 X 2010] Wojciech Broniowski
[wersja z 5 X ] Aaliza Matematycza część 3 Kospekt wykładu dla studetów fizyki/iformatyki Akademia Świętokrzyska / Wojciech Broiowski Różiczkowalość Pochoda fukcji jedej zmieej Pochoda f : ( a, b) R w
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III poziom rozszerzony
Wymagaia edukacyje a poszczególe ocey z matematyki w klasie III poziom rozszerzoy Na oceę dopuszczającą, uczeń: zazacza kąt w układzie współrzędych, wskazuje jego ramię początkowe i końcowe wyzacza wartości
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
Analiza Matematyczna część 3
[wersja z 9 I 9] Aaliza Matematycza część 3 Kospekt wykładu dla studetów fizyki/iformatyki Akademia Świętokrzyska 7/8 Wojciech Broiowski Różiczkowalość Pochoda fukcji jedej zmieej Pochoda f : ( a, b) R
Zadanie 1.6. Niech n N, a R + \ N, a 2 = n. Wykazać, że a / Q. Zadanie 1.7. Wykazać następujące twierdzenia za pomocą indukcji matematycznej.
. Liczby wymiere zasada idukcji matematyczej przekroje Dedekida Zadaie.. Niech A Q. Wykazać że jeśli istieje mi A odp. max A) to istieje if A odp. sup A) oraz if A = mi A odp. sup A = max A). Zadaie..
Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
SZEREGI LICZBOWE. s n = a 1 + a a n = a k. k=1. aq n = 1 qn+1 1 q. a k = s n + a k, k=n+1. s n = 0. a k lim n
SZEREGI LICZBOWE Z ciągu liczb a, a 2,... utwórzmy owy ciąg Przyjmijmy ozaczeia s = a + a 2 +... a = a k. k= k= a k = a + a 2 +... = s. Gdy graica k= a k jest liczbą, to mówimy, że szereg k= a k jest sumowaly
Analiza matematyczna dla informatyków
Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Matematyka 2. dr inż. Rajmund Stasiewicz
Matematyka 2 dr iż. Rajmud Stasiewiz Skaa oe Pukty Oea 5 2, 51 6 3, 61 7 3,5 71 8 4, 81 9 4,5 91-5, Zwoieie z egzamiu Oea z egzamiu izba puktów z ćwizeń - 5 Waruki zaizeia 6 kookwium ok. 15 pkt. 6 kartkówka
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
III seria zadań domowych - Analiza I
III seria zadań domowych - Aaliza I Różiczkowalość fukcji Zadaie Dla jakich wartości parametrów abc R fukcje a + gdy π si + b gdy > π a + b gdy 0 gdy > c a + b gdy c są różiczkowale. a + b gdy a 0 / arcsi
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.
Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych
Analiza matematyczna dla informatyków
Aaliza matematycza dla iformatyków Sprawdziay do Wykładów dla pierwszego roku iformatyki a Wydziale Matematyki, Iformatyki i Mechaiki Uiwersytetu Warszawskiego w latach 2007/8, 2008/9, 2009/0, 20/2, 202/3,
Analiza Matematyczna I dla Fizyki na WPPT Lista zadań
Aaliza Matematycza I dla Fizyki a WPPT Lista zadań Jacek Cichoń, WPPT, PWr, 07/8 Zadaia ozaczoe * są ieco trudiejsze od zadań bez gwiazdki. Zadaia ozaczoe ** są jeszcze trudiejsze. Wstęp. Logika, zbiory
Analiza Matematyczna I dla Fizyki na WPPT Lista zadań
Aaliza Matematycza I dla Fizyki a WPPT Lista zadań Jacek Cichoń, WPPT, PWr, 208/9 Zadaia ozaczoe * są ieco trudiejsze od zadań bez gwiazdki. Zadaia ozaczoe ** są jeszcze trudiejsze. Wstęp. Logika, zbiory
Ekonomia matematyczna - 1.1
Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x
Analiza matematyczna I. Pula jawnych zadań na kolokwia.
Aaliza matematycza I. Pula jawych zadań a kolokwia. Wydział MIiM UW, 23/4 ostatie poprawki: 6 listopada 23 Szaowi Państwo, zgodie z zapowiedzią, a każdym kolokwium w pierwszym semestrze co ajmiej 2 zadaia
Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta
Fukcje cze Moduł - dział -temat Fukcje cze dowolego kąta Lp 1 kąt w układzie współrzędych fukcje cze dowolego kąta zaki czych wartości czych iektórych kątów Kąt obrotu 2 dodati i ujemy kieruek obrotu wartości
Ekonomia matematyczna 2-2
Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
+ ln = + ln n + 1 ln(n)
"Łatwo z domu rzeczywistości zajśd do lasu matematyki, ale ieliczi tylko umieją wrócid." Hugo Dyoizy Steihaus Niech (a ) będzie ieskooczoym ciągiem rzeczywistym. Def. Szeregiem = a azywamy parę ciągów
gi i szeregi funkcyjne
ostatia aktualizacja: 15 czerwca 2012, 18:42 Podobie jak poprzedio wieszam tekst, ad którym powiieem jeszcze popracować, wie c prosze o iformacje o zauważoych b le dach. Przyk lad fukcji g lej igdzie ieróżiczkowalej
Funkcje tworz ce skrypt do zada«
Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego
Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)
Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a
P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.
Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy