Podprzestrzenie macierzowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podprzestrzenie macierzowe"

Transkrypt

1

2 Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń R(A ) przestrzei geerowaą przez zakres fukcji : m f ( y ) = A y M. Przybycień Matematycze Metody Fizyki I Wykład 9-2 R R ( A ) { A y y } = ξ Wszystkie obrazy odwzorowaia ξ są liiowymi kombiacjami kolum 2 Ax ( A A... A ) = 2 = ξ A macierzy A, tz, jeśli x = ( ξ ) j=, ξ2,..., ξ ξ A więc przestrzeń R(A) to przestrzeń apięta przez kolumy macierzy A (przestrzeń kolumowa), tz. Przykład: Podaj iterpretację geometryczą przestrzei R(A) oraz R(A ) dla macierzy ( ) A= b ( A ) R x, b = Ax Podobie R(A ) to przestrzeń apięta przez kolumy macierzy A czyli wiersze macierzy A (przestrzeń wierszowa), tz. ( ) R R Ax a R A y, a = y A ( A) spa( A ) ( ), A, A R A spa (, ) ( ) ( ) ( A spa A, A R A ) spa (,, ) j j ( ) liia w ( ) liia w = 2 3 = 2 = 2 =

3 Podprzestrzeie macierzowe wierdzeie: Dla dwóch macierzy A i B o tych samych wymiarach zachodzi: ( ) ( ) wiersz a) R A = R B A ~ B Dowód: wiersz a) A ~ B istieje P taka że PA = B b) R ( A) = R ( B) A ~ B - ( ) - ( ) A = = E A B = = E B spa(a) = spa(b) poieważ iezerowe wiersze w macierzach E A i E B są takie same. M. Przybycień Matematycze Metody Fizyki I Wykład 9-3 z y P a R A y : a = y A = y P PA a = z B a R B ( ) ( ) spa ( ) spa ( ) 2 m 2 m kol wiersz R A R = B A, A,..., A = B, B,..., B A ~ B b) dowód przebiega aalogiczie jak w (a) zastępując odpowiedio A, B przez A, B. Przykład: Czy astępujące zbiory wektorów apiają tą samą podprzestrzeń : {( 2 2 3) ( 2 4 3) ( 3 6 4) } {( ) ( ) } A =,,,,,,,,,,, B = 0, 0,,,, 2, 3, 4 Kostruujemy macierze A i B, których wierszami są wektory ze zbiorów A i B:

4 D: Podprzestrzeie macierzowe wierdzeie: Niech A będzie macierzą o wymiarach mâ, a U dowolą macierzą w postaci schodkowej otrzymaą z macierzy A: (a) iezerowe wiersze macierzy U apiają przestrzeń wierszową R(A ), (b) kolumy podstawowe w macierzy A apiają przestrzeń kolumową R(A). wiersz ( ) ( ) a) A ~ U R A = R U b) Niech b, b 2,, b r oraz, 2,, t ozaczają odpowiedio podstawowe i iepodstawowe kolumy macierzy A. Macierz Q iech będzie macierzą permutacji przestawiającą kolumy podstawowe a lewą stroę, tak że AQ= ( B m r N m t ) Kolumy iepodstawowe są liiowymi kombiacjami kolum podstawowych i mogą być wyzerowae za pomocą operacji elemetarych a kolumach macierzy AQ : ( ) ( ) ( ) ( ) AQ Q = B N Q = B 0 Q Q Q : AQ = B 0 A ~ B 0 2 m r m t 2 2 Przykład: Zajdź zbiory apiające przestrzeie R(A) i R(A ), jeśli: A = ( A ) = spa, R 2 ( ) 2 0 R A = spa, M. Przybycień Matematycze Metody Fizyki I Wykład 9-4 kol

5 Podprzestrzeie macierzowe = = { x x 0} Defiicja: Jądrem odwzorowaia f : m azywamy zbiór ( f ) f ( ) wierdzeie: ( f ) jest podprzestrzeią. A : x, x2 f f x + x2 = f x + f x2 = 0 N x + x2 N f M : x N f i α f α x = α f x = 0 αx N f D: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Defiicja: Przestrzeią zerową (jądrem) macierzy A mâ azywamy zbiór N = = ( A) { x Ax 0} Defiicja: Lewostroą przestrzeią zerową (lewostroym jądrem) macierzy A mâ azywamy zbiór ( ) m N A = { y m A y = 0} Przykład: Zajdź zbiór apiający przestrzeń N(A) gdzie A = Poszukiway zbiór to ogóle rozwiązaie rówaia Ax = 0 R 2 R x 2 x2 3 x = E A x = x = x + x 0 x h + x x x A = spa h,h2 2 A więc ( ) ( ) M. Przybycień Matematycze Metody Fizyki I Wykład 9-5 h

6 Podprzestrzeie macierzowe Wiosek: Aby zaleźć zbiór apiający przestrzeń N(A) gdzie rz(a mâ ) = r ależy zredukować A do postaci schodkowej U, a astępie rozwiązać rówaie Ux = 0 wyrażając zmiee podstawowe przez zmiee swobode i zajdując w te sposób ogóle rozwiązaie rówaia Ax = 0 w postaci x = x f h + x f h x f h 2 2 r r Zbiór wektorów = { h,h,...,h 2 r } apia przestrzeń i jest iezależy od postaci U. wierdzeie: Jeśli macierz A ma wymiar mâ to zachodzi: ) ( A) { } rz ( A) a N = 0 = b) N ( A ) = { 0} rz ( A) = m Dowód: (a) Wiemy, że rozwiązaie zerowe x = 0 jest jedyym rozwiązaiem rówaia Ax = 0 wtedy i tylko wtedy gdy rząd macierzy A jest rówy liczbie zmieych. (b) Podobie, że rozwiązaie zerowe y = 0 jest jedyym rozwiązaiem rówaia A y = 0 wtedy i tylko wtedy gdy rząd macierzy rz(a ) = m. Ale zachodzi rz(a ) = rz(a) wierdzeie: Dwie macierze A i B o tych samych wymiarach mają jedakowe przestrzeie zerowe gdy: wiersz a) N ( A) = N ( B) A ~ B ( ) ( ) b) N A = N B A ~ B M. Przybycień Matematycze Metody Fizyki I Wykład 9-6 kol

7 Podprzestrzeie macierzowe wierdzeie: Jeśli rz(a mâ ) = r oraz PA = U, gdzie P jest macierzą ieosobliwą, a U jest macierzą w postaci schodkowej, wtedy ostatie m-r wierszy macierzy P apia lewostroą przestrzeń zerową macierzy A. z. jeśli P = P P gdzie P 2 ma wymiar (m-r)âm 2 wtedy N ( A ) = R ( P2 ) Dowód: (trudy) Przykład: Zajdź zbiór apiający przestrzeń N(A ) gdzie A = Szukamy macierzy P, takiej, że PA = E A : / 3 2 / / 3 / 3 0 / / ( ) Dygresja: Jeśli G,, G k są macierzami elemetarymi opowiadającymi kolejym operacjom [ A I] [ B P] [ ] = [ ] = [ ] wierszowym w redukcji wtedy G...G G A I G...G G A G...G G B P k 2 k 2 k 2 { } A więc: ( A ) = spa ( / 3 5 / 3 ) / 3 2 / 3 0 P = 2 / 3 / 3 0 / / M. Przybycień Matematycze Metody Fizyki I Wykład 9-7

8 Kombiacja liiowa wektorów Defiicja: Wektor z przestrzei wektorowej V azywamy liiową kombiacją u,u,...,u k V wektorów jeśli daje się przedstawić w postaci: 2 v v = u + u u c c2 2 c k k Przykład: W zbiorze S wektorów z przestrzei M 2 2 wektor jest kombiacją liiową pozostałych wektorów S v 0 2, v 3 = = =, v = 2 0, v = Szukamy takich stałych c i aby zachodziło v = c v + c v + c v v 4 M. Przybycień Matematycze Metody Fizyki I Wykład 9-8 v c2 2c3 = c + 3c2 = c + c + c = c2 + 3c3 = = + 2 =

9 Liiowa iezależość wektorów v, v,..., v k { } S= 2 Defiicja: Zbiór wektorów z przestrzei wektorowej V azywamy liiowo iezależymi jeśli rówaie wektorowe: ma jedyie rozwiązaie trywiale c v + c v c k v k = 0 c= 0, c2= 0,..., c k = 0. Jeśli istieją rozwiązaia ietrywiale, to wektory ze zbioru S są liiowo zależe. wierdzeie: Dowoly układ wektorów z przestrzei lub jest liiowo iezależy wtedy i tylko wtedy gdy macierz której kolumami są te wektory, jest ieosobliwa. e, e 2,..., e A= e e 2...e [ ] Wiosek: Aby sprawdzić czy wektory są liiowo iezależe ależy zbudować z ich macierz i sprawdzić rząd tej macierzy, który określa liczbę liiowo iezależych wektorów w daym zbiorze. wierdzeie: Jeżeli pewie podukład m < wektorów z układu wektorów jest liiowo zależy, to cały układ jest też liiowo zależy. v, v 2,..., v M. Przybycień Matematycze Metody Fizyki I Wykład 9-9

10 Baza w przestrzei wektorowej V e, e 2,..., e v V { } Defiicja: Zbiór liiowo iezależych wektorów ależących do przestrzei wektorowej V azywamy bazą, jeśli dowoly wektor może być zapisay jako: v = i= M. Przybycień Matematycze Metody Fizyki I Wykład 9-0 v e Liczbę azywamy wymiarem przestrzei V i ozaczamy dimv. wierdzeie: Rozkład wektora a składowe w ustaloej bazie jest jedozaczy. x x = i= = i= x e i i i y e i e i x { } i i e, e 2,..., e { } Dowód: Niech wektor ma w bazie dwa zestawy współrzędych x i oraz y i : ( xi - yi ) ei = i= 0 xi = y i dla i= 2,,..., Uwaga: dowoly zbiór liiowo iezależych wektorów tworzy bazę w wymiarowej przestrzei wektorowej. W owej bazie zmieiają się współrzęde wektorów: x = i i i= wierdzeie: W wymiarowej przestrzei wektorowej, każdy układ s wektorów wymiarowych dla s > jest układem wektorów liiowo zależych. x e

11 Baza w przestrzei wektorowej V S = { v, v 2,..., v} { u,u,...,u } Dowód: Niech zbiór wektorów będzie bazą w przestrzei V. Chcemy pokazać, że zbiór wektorów z przestrzei V gdzie m > jest liiowo zależy, tz. istieją stałe k, k 2,, k m (ie wszystkie rówe zero) takie, że: k u + k u k u = 0 m m Poieważ S jest bazą, więc: u = c v+ c2 v c v u2 = c2 v+ c22 v c2 v d v + d v d v = 0 u = c v+ c v c v gdzie di= cik+ ci2k cimkm m m 2m 2 m v i S = 2 Poieważ tworzą zbiór wektorów liiowo iezależych więc wszystkie d i = 0, czyli ck+ c2k cmkm = 0 c2k+ c22k c2mkm = 0 c k+ c k c k = 0 Poieważ w powyższym układzie jedorodym mamy miej rówań iż zmieych k i, więc musi posiadać o ietrywiale rozwiązaie, a więc zbiór S jest liiowo zależy. M. Przybycień Matematycze Metody Fizyki I Wykład 9- m 2 2 m m

12 Zbiór wektorów tworzących bazę Przykład: Sprawdzić czy astępujące wektory z przestrzei 3 tworzą bazę: e = 2 e = e = 3 2 ( ) ( ) ( ) 2 3 Sprawdzamy czy te wektory są liiowo iezależe: + + = 3 c c2 c3 0 c 0 c e = + + = = i i 0 2c c2 3c c2 0 i= + = c c2 2c3 0 2 c3 0 Poieważ det A =, więc układ ma tylko rozwiązaie zerowe, a więc wektory są liiowo iezależe. e, e, e M. Przybycień Matematycze Metody Fizyki I Wykład 9-2 A c = c = c =0 2 3 Aby przekoać się, że wektory tworzą bazę w 3 ależy pokazać, że dowoly v =,, ( a b c) 2 3 wektor moża jedozaczie przedstawić jako ich kombiację liiową: Math Player a 3 v + v2 + v3 = a v a 5a 3b + 2c - b = vie i 2v + v2 + 3v3 = b v 2 = A b = a + b c c i= v v2 + 2v3 = c v 3 c 3a + 2b c Uwaga: a, b, c to współrzęde wektora w bazie aturalej: {(,0,0), (0,,0), (0,0,) } v, v 2, v 3 to współrzęde tego samego wektora w bazie e, e 2, e3

13 Uzupełić!!!!!! wierdzeie: Niech A będzie macierzą o wymiarze m. Przestrzeie kolumowa oraz wierszowa macierzy A mają te sam wymiar i z defiicji rówy rzędowi macierzy rz(a)=r. Dowód: Algebra str 237. Poieważ S jest bazą, więc: u = c v+ c2 v c v u2 = c2 v+ c22 v c2 v u = c v+ c v c v m m 2m 2 m v i d v + d v d v = 0 gdzie d = c k+ c k c k i i i2 2 im m Poieważ tworzą zbiór wektorów liiowo iezależych więc wszystkie d i = 0, czyli ck+ c2k cmkm = 0 c2k+ c22k c2mkm = 0 c k+ c k c k = m m Poieważ w powyższym układzie jedorodym mamy miej rówań iż zmieych k i, więc musi posiadać o ietrywiale rozwiązaie, a więc zbiór S jest liiowo zależy. M. Przybycień Matematycze Metody Fizyki I Wykład 9-3

14 Macierz przejścia pomiędzy bazami w { } Niech będą dae dwie dowole bazy w : oraz, i =,,. Szukamy macierzy przejścia pomiędzy tymi bazami, takiej że (k umeruje elemety wektorów e i i e i ): M. Przybycień Matematycze Metody Fizyki I Wykład 9-4 e i { e i } e = c e + c e c e e = c e + c e c e ei = c jie j j= = e = c e + c e c e k k 2 k2 k k2 2 k 22 k2 2 k k k 2 k2 k W zapisie macierzowym mamy (E i E to macierze, których kolumami są wektory baz): e e 2 e e e2 e c c2 c e e e e e e c c c = C = E E e e e e e e c c c E E C { e i } { e i } - C = E E Macierz trasformacji pomiędzy bazami oraz daa jest za pomocą macierzy:

15 rasformacje współrzędych wektora { } Niech będą dae dwie dowole bazy w : oraz, i=,,. Szukamy macierzy przejścia pomiędzy współrzędymi dowolego wektora w tych bazach: x = x e = x c e = x c e = x e e i { e i } i i i ji j i ji j j j i= i= j= i, j= j= W zapisie macierzowym mamy: - x = Cx x = C x A więc macierz trasformacji współrzędych O daa jest przez: - ( ) O C = E E = E E x = x c j i ji i= wierdzeie: Macierz trasformacji współrzędych pomiędzy bazami ortoormalymi, jest ortogoala. E = E O E E E E = E E E E O E = E ( - ) - ( - ) ( - ) = = = = = - Uwaga: Macierz której kolumy (lub wiersze) są wzajemie ortogoalymi wektorami o jedostkowej długości, jest ortogoala. Math Player Uwaga: [ ] [ ] G k...g2g E E G k...g2g E G k...g2g E I E = = E M. Przybycień Matematycze Metody Fizyki I Wykład 9-5

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

METODY NUMERYCZNE dr inż. Mirosław Dziewoński

METODY NUMERYCZNE dr inż. Mirosław Dziewoński Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego

1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego WYKŁD 4 3 Przestrzei Odwzorowaia Rząd acierzy Twierdzeie Croecera- Capellego 3 Przestrzeń Przestrzeń wetorowa Baza przestrzei wetorowej 78 (Przestrzeń ) Niech ozacza zbiór wszystich ciągów -eleetowych

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

A A A A11 A12 A1. m m mn

A A A A11 A12 A1. m m mn DODTEK NR. GEBR MCIERZY W dodatku tym podamy ajważiejsze defiicje rachuku macierzowego i omówimy iektóre fukcje i trasformacje macierzy ajbardziej przydate w zastosowaiach umeryczych a w szczególości w

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Równania liniowe rzędu drugiego stałych współczynnikach

Równania liniowe rzędu drugiego stałych współczynnikach Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej

Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej Jacek Cichoń Katedra Iformatyki Wydział Podstawowych Problemów Techiki Politechiki Wrocławskiej MAP3045: Algebra z Geometrią Aalityczą Wykład przezaczoy jest dla studetów I roku I stopia Iformatyki a WPPT.

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

X, K, +, - przestrzeń wektorowa

X, K, +, - przestrzeń wektorowa Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

A.W. Spiwakowskij. Algebra liniowa. z zastosowaniem technologii informacyjnych

A.W. Spiwakowskij. Algebra liniowa. z zastosowaniem technologii informacyjnych AW Spiwakowskij Algebra liiowa z zastosowaiem techologii iformacyjych WSTĘP Książka ta jest pomocą aukową z zakresu kursu algebry liiowej Może być wykorzystaa podczas auczaia stosowego rozdziału algebry

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Szanowni koledzy! Jak pewnie wi kszo ci z Pa stwa wiadomo, postanowili my układa zadania na kolejne

Szanowni koledzy! Jak pewnie wi kszo ci z Pa stwa wiadomo, postanowili my układa zadania na kolejne Szaowi koledzy! Jak pewie wi kszo ci z Pa stwa wiadomo, postaowili my układa zadaia a koleje wiczeia, które wiczeiowcy mog a swoich zaj ciach wykorzysta a w ka dym razie s zobowi zai rozprowadzi w ród

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, ) PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEOSTWA

RACHUNEK PRAWDOPODOBIEOSTWA RACHUNEK PRAWDOPODOBIEOSTWA Elemetarym pojęciem w rachuku prawdopodobieostwa jest zdarzeie elemetare tz. możliwy wyik pewego doświadczeia p. rzut moetą: wyrzuceie orła lub reszki arodziy człowieka: urodzeie

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Szkic do wykładów z mechaniki analitycznej

Szkic do wykładów z mechaniki analitycznej Szkic do wykładów z mechaiki aalityczej prof. dr hab. Bogda Maruszewski pokój 408 BM e-mail: bogda.maruszewski@put.poza.pl www: http://tm.am.put.poza.pl kosultacje: poiedziałek 11 00 12 00 Politechika

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

4 KWADRYKI W PRZESTRZENI RZUTOWEJ

4 KWADRYKI W PRZESTRZENI RZUTOWEJ 252 ROZDZIAŁ 5. KWADRYKI 2- Niech 77 = F2iP2 będzie płaszczyzą rzutową ad ciałem F2 (złożoą z sied miu puktów); iech p i q będą dwoma różymi jej puktami. Ile istieje automorfizmów płaszczyzy 77, przeprowadzających

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo