Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Wielkość: px
Rozpocząć pokaz od strony:

Download "Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek"

Transkrypt

1 Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy wyzaczyć bez koieczości przedstawiaia liczby z w postaci trygoometryczej. Przypomijmy ajpierw, w jaki sposób zajdujemy pierwiastki z liczby zespoloej, gdy daa jest jej postać trygoometrycza. Niech z = r (cos φ + i si φ będzie liczbą zespoloą, gdzie r > 0 i iech N. Wówczas istieje różych liczb zespoloych w, spełiających rówaie w = z i liczby te dae są wzorem: (k = 0, 1,..., 1, gdzie: w k = r (cos ψ k + i si ψ k (1 (k = 0, 1,..., 1. ψ k = φ + 2kπ (2 Przykład 1. Wyzaczymy pierwiastki stopia z liczby zespoloej z = 1 + i = ( 2 cos π + i si π We wzorach (1 i (2 podstawiamy =, r = 2, φ = π, a astępie kolejo k = 0, 1, 2: w 0 = 6 ( π 2 cos π π + i si π = 6 ( 2 cos π 12 + i si π 12 w 1 = 6 ( π 2 cos π π + i si π = 6 2 (cos π + i si π w 2 = 6 ( π 2 cos π π + i si π = 6 ( 2 cos π + i si π Do przykładu tego wrócimy jeszcze w dalszej części.

2 Zdarzają się sytuacje, gdy pierwiastkowaej liczby z ie da się przedstawić w postaci trygoometryczej bez użycia kalkulatora. Przykład 2. Niech z = + 5i. Moduł liczby z jest rówy. Jeśli apiszemy: z = ( + 5 i to widzimy, że zalezieie kąta ψ, dla którego cos φ = i si φ = 5 jest iemożliwe bez użycia kalkulatora. (uwaga ogóla: awet jeśli w jakichś kokretych przypadkach jesteśmy w staie wyzaczyć argumet liczby przy pomocy odpowiedich zabiegów algebraiczych, często jest to bardzo skomplikowae rachukowo. Następy przykład ilustruje sytuację, w której jede z pierwiastków jest łatwy do zalezieia, atomiast ie jest jase, jak wyzaczyć pozostałe pierwiastki. Przykład. Rozważmy rówaie z 6 = ( + 5i 6. Wiemy, że rówaie to ma 6 różych rozwiązań są to wszystkie pierwiastki stopia 6 z liczby zespoloej ( + 5i 6. Aby wyzaczyć te pierwiastki a podstawie wzorów (1 i (2, musielibyśmy zaleźć postać trygoometryczą tej liczby, co jak widzieliśmy powyżej jest bez użycia kalkulatora iemożliwe. Z drugiej stroy widzimy, że jedym z rozwiązań aszego rówaia, a więc jedym z pierwiastków 6 stopia z liczby ( + 5i 6, jest oczywiście liczba + 5i. W astępej części dowiemy się, jak w sytuacji opisaej w Przykładzie wyzaczyć pozostałe pierwiastki. 2 Pierwiastek główy i pożytki z iego W Przykładzie 1 otrzymaliśmy astępujące pierwiastki stopia liczby 1 + i: w 0 = 6 ( 2 cos π 12 + i si π 12 w 1 = 6 2 (cos π + i si π w 2 = 6 ( 2 cos π + i si π

3 Liczby π 12, 17 π, π to argumety główe kolejych pierwiastków. Widzimy, że ajmiejszą z tych liczb jest π 12, czyli argumet główy pierwiastka w 0. Ilustruje to rysuek 12 poiżej: Te spośród wszystkich pierwiastków stopia z iezerowej liczby zespoloej z, który ma ajmiejszy dodati argumet główy, osi azwę pierwiastka główego. Defiicja 1. Pierwiastkiem główym stopia z liczby zespoloej z azywamy te z pierwiastków, który ma ajmiejszy dodati argumet główy. Popatrzmy jeszcze raz a wzór (2: ψ k = φ + 2kπ i przyjmijmy, że liczba φ jest argumetem główym liczby z = r (cos φ + i si φ. Widzimy od razu, że: jeżeli φ > 0, to pierwiastkiem główym stopia liczby z jest w 0, poieważ wyrażeie ψ k przyjmuje ajmiejszą wartość dodatią φ dla k = 0; jeżeli φ = 0, to pierwiastkiem główym stopia liczby z jest w 1, poieważ wyrażeie ψ k przyjmuje ajmiejszą wartość dodatią 2π dla k = Pierwiastek główy z liczby 1 producet pozostałych pierwiastków Jeżeli zastosujemy wzory (1 i (2 do liczby zespoloej 1 = cos 0 + i si 0, to widzimy, że jej pierwiastki stopia są rówe:

4 ɛ 0 = cos 0 + i si 0 = 1, ɛ 1 = cos 2π + i si 2π, ɛ 2 = cos 2 2π 2 2π + i si, ( 1 2π ( 1 2π ɛ 1 = cos + i si (uwaga: pierwiastki liczby 1 często ozaczae są symbolem ɛ k zamiast w k. Widzimy, że pierwiastek główy liczby 1 to ɛ 1. Jego argumet główy to 2π. Przykład. Pierwiastek główy stopia 2 z liczby 1 to cos 2π 2 + i si 2π 2 = 1 Pierwiastek główy stopia z liczby 1 to cos 2π + i si 2π = Pierwiastek główy stopia z liczby 1 to cos 2π + i si 2π = i Rysuek poiżej przedstawia obszar grafiki oka Geogebry, w którym pokazao całą sytuację w przypadku = 8. Możesz poeksperymetować a żywo z iteraktywą ilustracją Geogebry tutaj.

5 Pierwiastki stopia z liczby 1 mają ciekawą własosć. Zauważmy miaowicie, że dla każdej liczby aturalej k, takiej że 1 k 1, możemy apisać: ( ɛ k = cos 2kπ ( 2kπ + i si = cos k 2π + i si k 2π ( = cos 2π + i si 2π k = ɛ k 1 Wykazaliśmy w te sposób astępujące twierdzeie. Twierdzeie 1. Jeżeli ɛ 1 ozacza pierwiastek główy z liczby 1, to pozostałe pierwiastki stopia liczby 1 są rówe: ɛ k = ɛ k 1 ( (k = 1,..., 1. Pierwiastki z jedyki w akcji Przekształćmy wzór a pierwiastek w k stopia z liczby z = r(cosφ + isiφ, gdzie φ > 0 jest argumetem główym liczby z: w k = ( r cos φ + 2kπ = ( r cos φ + i si φ + i si φ + 2kπ ( cos 2kπ 2kπ + i si = ( r ( φ + 2kπ ( φ + i si + 2kπ = cos = w 0 ɛ k = w 0 ɛ k 1 Widać, że gdy zamy pierwiastek główy stopia liczby z, to pozostałe pierwiastki możemy otrzymać jako iloczyy w 0 i kolejych pierwiastków stopia z liczby 1. Tak więc mamy w 1 = w 0 ɛ 1, w 2 = w 0 ɛ 2 1 = w 1 ɛ 0 i tak dalej. Moża udowodić, że do wyprodukowaia wszystkich pierwiastków liczby z jako iloczyów jedego z jej pierwiastków przez koleje potęgi pierwiastka główego z liczby 1 moża użyć któregokolwiek pierwiastka w k liczby z (a iekoieczie pierwiastka główego z tej liczby. Mówi o tym poiższe twierdzeie. Twierdzeie 2. Załóżmy, że liczba z 1 jest jedym z pierwiastków stopia z liczby zespoloej z. Wówczas pozostałe pierwiastki stopia z liczby z są rówe: lub rówoważie: z 2 = z 1 ɛ 1, z = z 2 ɛ 1,..., z = z 1 ɛ 1 ( z 2 = z 1 ɛ 1, z = z 1 ɛ 2 1,..., z = z 1 ɛ 1 1 (5 gdzie ɛ 1 jest pierwiastkiem główym stopia z liczby 1, ɛ 1 = cos 2π + i si 2π.

6 Przykład 5. Jedym z pierwiastków czwartego stopia z liczby z = (2+i jest oczywiście liczba w 1 = 2 + i, będąca podstawą potęgi powyżej. Pozostałe pierwiastki wyzaczamy astępująco. 1. Wyzaczamy pierwiastek główy stopia z liczby 1: ɛ 1 = cos 2π + i si 2π = i. 2. Stosujemy wzór ( i otrzymujemy: w 2 = w 1 ɛ 1 = (2 + ii = 1 + 2i w = w 2 ɛ 1 = ( 1 + 2i i = 2 i w = w ɛ 1 = ( 2 i i = 1 2i Przykład 6. Rozwiązać rówaie z = ( i 8. Zauważmy, że asze rówaie możemy zapisać jako: z = [(1 2i 2] Poieważ (1 2i 2 = i (sprawdź to sam, możąc liczbę 1 2i przez siebie, więc rówaie przyjmuje postać: z = ( i Widać z iego, że mamy zaleźć wszystkie pierwiastki stopia z liczby ( i. Jedym z tych pierwiastków jest oczywiście liczba w 1 = i. Pozostałe pierwiastki zajdziemy w podoby sposób, jak w poprzedim przykładzie, wykorzystując pierwiastek główy czwartego stopia z liczby 1, a więc ɛ 1 = i z liczby 1: w 2 = w 1 ɛ 1 = ( ii = i w = w 2 ɛ 1 = ( i i = + i w = w ɛ 1 = ( + i i = + i Przykład 7. Rozwiązać rówaie z = (2 i. Rozwiązaia aszego rówaia to pierwiastki stopia z liczby (2 i. Jedym z tych pierwiastków jest oczywiście liczba z 1 = 2 i. Wyzaczymy pozostałe pierwiastki, korzystając z Twierdzeia 2. Pierwiastki stopia z liczby 1 są rówe:

7 ɛ 0 = 1 ɛ 1 = cos 2π + i si 2π = i ɛ 2 = cos π + i si π = i Wyzaczymy teraz pozostałe rozwiązaia aszego rówaia (a więc pozostałe pierwiastki stopia z liczby (2 i a podstawie Twierdzeia 2. Stosujemy wzór (: ( z 2 = z 1 ɛ 1 = (2 i i = 1 + ( i Widzimy w tym momecie, że jeśli będziemy wyzaczać postać algebraiczą pierwiastka z a podstawie wzoru (, to czeka as dość kłopotliwe możeie: [ ( 1 z = z 2 ɛ 1 = i 2 + ] ( i Użyjmy więc wzoru (5: z = z 1 ɛ 2 1 = z 1 ɛ 2 = (2 i ( i = 1 ( i 2 Ostatie dwa przykłady pokazują, że w pewych sytuacjach wygodie jest stosować wzór (, a w iych lepiej wykorzystać wzór (5. Poieważ pamiętaie wzorów jest kłopotliwe, dobrze jest do całego zagadieia podejść w astępujący sposób. Możymy zay pierwiastek z 1 z liczby z przez odpowiedi pierwiastek główy z liczby 1 i oceiamy, w jaki sposób wygodiej będzie wyzaczać koleje pierwiastki: możąc otrzymay wyik poowie przez pierwiastek główy ɛ 1 z 1, czy też możąc z 1 przez pierwiastek ɛ k z liczby 1. Ćwiczeie Rozwiąż rówaia: (a z = (2 + i, (b z 6 = ( 1 + 2i 12, P.Kajetaowicz

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Wyk lad 2 W lasności cia la liczb zespolonych

Wyk lad 2 W lasności cia la liczb zespolonych Wyk lad W lasości cia la liczb zespoloych 1 Modu l, sprz eżeie, cz eść rzeczywista i cz eść urojoa Niech a, b bed a liczbami rzeczywistymi i iech z = a bi. (1) Przypomijmy, że liczba sprzeżo a do z jest

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Liczby zespoloe 1. Określeie liczb zespoloych Rówaie kwadratowe ie ma pierwiastków rzeczywistych gdy < 0, bo wzory ogóle wymagają wtedy obliczeia

Bardziej szczegółowo

"Liczby rządzą światem." Pitagoras

Liczby rządzą światem. Pitagoras "Liczby rządzą światem." Pitagoras Def. Liczbą zespoloą azywamy liczbę postaci z= x +yi, gdzie x, y є oraz i = -1. Zbiór liczb zespoloych ozaczamy przez ={ x + yi: x, y є } Ozaczeia x= Re z częśd rzeczywista

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

a 2 + b, b ) ( ) Wówczas (a, b) =, =(1, 0). 2 a 2 + b 2 a 2 + b2 a 2 + b 2

a 2 + b, b ) ( ) Wówczas (a, b) =, =(1, 0). 2 a 2 + b 2 a 2 + b2 a 2 + b 2 Ciało liczb zespoloych Twierdzeie Niech C = R W zbiorze C określamy dodawaie: a, b)+c, d) =a + c, b + d) oraz możeie: a, b) c, d) =ac bd, ad + bc) Wówczas C, +, ) jest ciałem, w którym elemetem eutralym

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x

ALGEBRA LINIOWA Informatyka 2015/2016 Kazimierz Jezuita. ZADANIA - Seria 1. Znaleźć wzór na ogólny wyraz ciągu opisanego relacją rekurencyjną: x Iformatyka 05/06 Kazimierz Jezuita ZADANIA - Seria. Relacja rekurecyja kowecja sumacyja suma ciągu geometryczego. Zaleźć wzór a ogóly wyraz ciągu opisaego relacją rekurecyją: x sprowadzając problem do

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Liczby zespoloe 1. Określeie liczb zespoloych W starożytości okazało się, że zbiór liczb wymierych jest iewystarczający, bo ie ma takiej liczby

Bardziej szczegółowo

Matematyczne Metody Fizyki I

Matematyczne Metody Fizyki I Matematycze Metody Fizyki I Dr hab. iż.. Mariusz Przybycień Matematyka dla przyrodików i iżyierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrae rozdziały matematyczych metod fizyki, A. Leda, B. Spisak, Wydawictwo

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19 47. W każdym z zadań 47.-47.5 podaj wzór a fukcję różiczkowalą f :D f R o podaym wzorze a pochodą oraz o podaej wartości w podaym pukcie. 47.. f x 4x 5 54 f D f R 4x 555 fx + 47.. f x x+ f D f, + fx 9

Bardziej szczegółowo

Podstawowe cechy podzielności liczb.

Podstawowe cechy podzielności liczb. Mariusz Kawecki, Notatki do lekcji Cechy podzielości liczb Podstawowe cechy podzielości liczb. Pamiętamy z gimazjum, że istieją reguły, przy pomocy których łatwo sprawdzić, czy kokreta liczba dzieli się

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski

Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...

Bardziej szczegółowo

CIĄGI LICZBOWE. Poziom podstawowy

CIĄGI LICZBOWE. Poziom podstawowy CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

pitagorejskie, równanie Pella i jedno zadanie z XVI Olimpiady Matematycznej

pitagorejskie, równanie Pella i jedno zadanie z XVI Olimpiady Matematycznej pitagorejskie, rówaie Pella i jedo zadaie z XVI Olimpiady Matematyczej Wszyscy, którzy mieli do czyieia ze szkoła poadpodstawowa słyszeli iewatpliwie określeie twierdzeie Pitagorasa To twierdzeie było

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Geometrycznie o liczbach

Geometrycznie o liczbach Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly

Bardziej szczegółowo

Ekonomia matematyczna - 2.1

Ekonomia matematyczna - 2.1 Ekoomia matematycza - 2.1 Przestrzeń produkcyja Zakładamy,że w gospodarce występuje towarów, każdy jako akład ( surowiec ) lub wyik ( produkt ) w procesach produkcji. Kokrety proces produkcji jest reprezetoway

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

III. LICZBY ZESPOLONE

III. LICZBY ZESPOLONE Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Funkcje tworzące - przypomnienie

Funkcje tworzące - przypomnienie Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1 LUX, zima 2016/17 585. Wskaż liczbę rzeczywistą k, dla której podaa graica istieje i jest dodatią liczbą rzeczywistą. Podaj wartość graicy dla tej wartości parametru k. Jeżeli odpowiedź jest liczbą wymierą, podaj ją w postaci

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY

MATEMATYKA POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA OD 05 ( NOWA MATURA ) FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Klucz puktowaia

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Tematy zadań 2 razy 33 przykładowe zadania maturalne. Matura podstawowa

Tematy zadań 2 razy 33 przykładowe zadania maturalne. Matura podstawowa Tematy zadań razy przykładowe zadaia maturale Matura podstawowa Porówaj liczby: 54 + 5 oraz 4 W klasie jest 9 ucziów o średiej wieku 6 lat Średia wieku wzrośie o rok, jeżeli doliczy się wiek wychowawcy

Bardziej szczegółowo

Funkcja wykładnicza i logarytm

Funkcja wykładnicza i logarytm Rozdział 3 Fukcja wykładicza i logarytm Potrafimy już defiiować potęgi liczb dodatich o wykładiku wymierym: jeśli a > 0 i x = p/q Q dla p, q N, to aturalie jest przyjąć a x = a 1/q) p = a 1/q } {{... a

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

A A A A11 A12 A1. m m mn

A A A A11 A12 A1. m m mn DODTEK NR. GEBR MCIERZY W dodatku tym podamy ajważiejsze defiicje rachuku macierzowego i omówimy iektóre fukcje i trasformacje macierzy ajbardziej przydate w zastosowaiach umeryczych a w szczególości w

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki marzec 2012

Materiał ćwiczeniowy z matematyki marzec 2012 Materiał ćwiczeiowy z matematyki marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych dla iewidomych POZIOM PODSTAWOWY Klucz puktowaia do zadań zamkiętych Nr zad 3 4 6 7

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)

ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n) ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Spis treści. I. Wiadomości wstępne... 3

Spis treści. I. Wiadomości wstępne... 3 Spis treści I. Wiadomości wstępe... 3 II. Pojęcia ogóle wraz z twierdzeiami... 4 1. Jedostka urojoa... 4. Liczba zespoloa... 4 3. Iterpretacja geometrycza... 7 4. Moduł liczby zespoloej... 8 5. Liczba

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony). Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a,, a będą dowolymi liczbami Sumę a + a + + a zapisuje się zazwyczaj w postaci (czytaj: suma od do a ) Za Σ to duża greca litera sigma,

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

1. Granica funkcji w punkcie

1. Granica funkcji w punkcie Graica ukcji w pukcie Deiicja Sąsiedztwem o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r ( a a Deiicja Sąsiedztwem lewostroym o promieiu r > 0 puktu a R azywamy zbiór S ( a ( a r Deiicja Sąsiedztwem

Bardziej szczegółowo

1 Wersja testu A 21 czerwca 2017 r. 1. Wskazać taką liczbę wymierną w, aby podana liczba była wymierna. w = w 2, w = 2.

1 Wersja testu A 21 czerwca 2017 r. 1. Wskazać taką liczbę wymierną w, aby podana liczba była wymierna. w = w 2, w = 2. 1 Wersja testu A 1 czerwca 017 r. 1. Wskazać taką liczbę wymierą w, aby podaa liczba była wymiera. 10 1 ) 10 +w, w = 1 5 1 ) 10 +w, w = ) 10 10 3 +w 3, w = 1 ) 5 10 3 +w 3, w = 4. Zapisać wartość podaej

Bardziej szczegółowo

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt

Bardziej szczegółowo