oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

Wielkość: px
Rozpocząć pokaz od strony:

Download "oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:"

Transkrypt

1 Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że: μ, α,, α K, β,, β T to iezae, ale stałe (ielosowe) parametry, które spełiają astępujące założeia ormujące: α + + α K = 0, β + + β T = 0 ε t,k jest jedyym losowym składikiem zmieej X t,k, Wszystkie składiki losowe (dla k =,2,, K oraz t =,2,, T) są iezależymi zmieymi losowymi o zerowej wartości oczekiwaej i takiej samej, iezaej wariacji σ 2. Wioskowaie o iezaych parametrach modelu μ, α,, α K, β,, β T, σ 2 opieramy a astępujących średich z próbki: X = K T X KT k= t= k,t, X k = T X T t= k,t, k =,2,, K, X t = K X K k= k,t, t =,2,, T, oraz a sumach kwadratów odchyleń z próbki: Sε = K T (X k,t X k X t + X ) 2 t= Sα = K k= (X k X ) 2, Sβ = (X t X ) 2 k=, T t= Wybierz zdaie prawidłowo określające związki między zmieymi losowymi Sα, Sβ oraz Sε. (A) (B) (C) (D) (E) Zależości występują dla każdej pary z trzech zmieych Sα, Sβ oraz Sε Sα oraz Sβ są zależe, zaś Sε jest iezależa od każdej z ich Wszystkie trzy zmiee są iezależe Sε oraz Sβ są zależe, zaś Sα jest iezależa od każdej z ich Sα oraz Sε są zależe, zaś Sβ jest iezależa od każdej z ich

2 Zadaie 2. Mamy day ciąg liczb q, q2,..., q z przedziału 0,. Rozważmy dwie zmiee losowe: o Y o rozkładzie dwumiaowym i parametrach, q, gdzie q q i i o Z, której warukowy rozkład (przy daej wartości Q) jest rozkładem dwumiaowym z parametrami, Q, zaś zmiea Q ma rozkład -puktowy taki, że Pr( Q qi ), i,2,..., Wariacje tych dwóch zmieych związae są rówością: var(z) = var(y) + a (q i q ) 2 Stała a występująca w tej rówości wyosi: i= (A) (B) (C) (D) (E) 2 2

3 Zadaie 3. Pary zmieych losowych (N, X ) oraz (N 2, X 2 ) są iezależe, i ozaczają odpowiedio liczbę i wartość szkód dla dwóch ryzyk. Wartość szkód w obu przypadkach ma złożoy rozkład Poisso z parametrami odpowiedio (λ, F ) oraz (λ 2, F 2 ). Oczekiwae liczby szkód λ, λ 2, oraz dystrybuaty F, F 2, dae są wzorami: i λ i F i (x) dla x < F i (x) dla x [, 2) F i (x) dla x / /0 Wobec tego E (N + N 2 X + X 2 = 3) wyosi: (A) 8/8 (B) 9/8 (C) 20/8 (D) 2/8 (E) 22/8 3

4 Zadaie 4. Łącza wartość szkód X ma złożoy rozkład ujemy dwumiaowy. Liczba szkód ma wartość oczekiwaą rówą /2 i wariację rówą 2/3. Rozkład wartości pojedyczej szkody: ma a przedziale (0, 5) gęstość daą wzorem f(x) = x, oraz w pukcie 5 masę prawdopodobieństwa rówą Wariacja zmieej X wyosi: (A) (B) (C) (D) (E)

5 Zadaie 5. Rozważamy zdyskotowaą a momet początkowy wartość składek pomiejszoą o wartość szkód w klasyczym procesie adwyżki ubezpieczyciela: exp( t) Bt c exp( Tk ) Yk, gdzie: k: T t k ct jest sumą składek które apłyęły do mometu t, T, to momet wystąpieia i wartość bieżąca k-tej szkody Y k k, Y2, Y3,... T,( T2 T ),( T3 T2, ( T2 T ),( T3 T2, Y2, Y3 Y ),... są iezależe T ),... mają rozkład wykładiczy o wartości oczekiwaej 0. 0 Y mają rozkład o mometach rówych:,... E Y, EY 2 3 6% to zakładaa przy dyskotowaiu itesywość oprocetowaia Dobierz stałą c tak, aby współczyik zmieości (odchyleie stadardowe podzieloe przez wartość oczekiwaą) zmieej: c B exp( T k ) Y k k wyiósł /4. (A) 06 (B) (C) (D) 2 (E)

6 Zadaie 6. Kierowca, którego charakteryzuje wartość q parametru ryzyka Q, zgłasza szkody (jedą lub więcej) w ciągu roku z prawdopodobieństwem q, zaś ie zgłasza szkód z prawdopodobieństwem p = q, przy czym zdarzeia te w kolejych latach są zdarzeiami iezależymi. Rozkład parametru ryzyka Q w populacji kierowców jest a przedziale (0, ) day gęstością: f Q (x) = Γ(α + β) Γ(α)Γ(β) xα ( x) β Zakładamy, że populacja jest zamkięta (starzy kierowcy ie zikają, owi się ie pojawiają). Kierowcy migrują pomiędzy klasami bardzo prostego, 4-klasowego systemu bous-malus. W systemie tym każdy kierowca, który w daym roku zgłosił jedą lub więcej szkód, ląduje w roku astępym w klasie pierwszej (z ajwyższą składką). Jeśli jedak ie zgłosił żadej szkody, wtedy: Ląduje w klasie drugiej, o ile w daym roku był w klasie pierwszej; Ląduje w klasie trzeciej, o ile w daym roku był w klasie drugiej; Ląduje w klasie czwartej, o ile w daym roku był w klasie trzeciej lub czwartej. Wiadomo, że rozkład prawdopodobieństwa a przestrzei klas dla dowolego kierowcy w takim systemie bous-malus stabilizuje się (przestaje zależeć od klasy startowej) po upływie kilku pierwszych lat. Ozaczmy przez p 4 wartość oczekiwaą udziału kierowców przebywających w klasie czwartej w całkowitej liczebości kierowców w tej populacji, po osiągięciu ww. stabilizacji. Przyjmijmy, że parametry (α, β) = (2, 8). Wobec tego p 4 wyosi: (A) 22/55 (B) 24/55 (C) 26/55 (D) 28/55 (E) 30/55 6

7 Zadaie 7. Rozważamy proces adwyżki ubezpieczyciela z czasem ciągłym: U(t) = u + (c du)t S(t), gdzie: S(t) jest procesem o przyrostach i.i.d., o rozkładzie ormalym z wartością oczekiwaą rówą μt i wariacją σ 2 t, d to stopa dywidedy wypłacaej akcjoariuszom od kapitału początkowego u (c du) to itesywość apływu składki pomiejszoej o wypłacaą dywidedę Podejmujemy rówocześie decyzję a temat pożądaego poziomu kapitału początkowego u oraz itesywości składki c. Wyzaczamy te parametry tak, aby zachować kokurecyjy (jak ajiższy) poziom składki c, przy ograiczeiu, iż prawdopodobieństwo ruiy ie może przekroczyć z góry zadaego poziomu ψ. Przy tych założeiach kokurecyjy poziom itesywości składki wyraża się wzorem: c = μ + aσ Jeśli stopa dywidedy wyosi d = 6%, a dopuszczale prawdopodobieństwo ruiy ψ = exp ( 3), to parametr a formuły składki przyjmie wartość: (A) (B) (C) (D) (E)

8 Zadaie 8. Ubezpieczyciel prowadzi dwa portfele ubezpieczeń. W każdym z portfeli pojedycze ryzyko geeruje szkody zgodie ze złożoym procesem Poissoa z taką samą itesywością. Portfele różią się rozkładem wartości pojedyczej szkody i liczbą ryzyk w portfelu ( i 2 odpowiedio). Stosukowy arzut a składkę etto dla ryzyk w obu portfelach jest te sam i wyosi. W rezultacie parametry modelu są astępujące: portfel: itesywość łącza, rozkład wartości pojedyczej szkody o gęstości f y 2exp( 2y ; ), składka za jedo ryzyko 2 2 portfel: itesywość łącza f 2, rozkład wartości pojedyczej szkody o gęstości. y 5exp( 5y), składka za jedo ryzyko 5 Jeśli wiemy, że fukcja prawdopodobieństwa ruiy ubezpieczyciela jest postaci: 2 5 u exp u exp u, to wartości parametrów modelu, wyoszą: 2 (A) (B) (C) (D) (E), 3, 3, 3 2, 3 2,

9 Zadaie 9. Niech N ozacza liczbę szkód zaszłych w ciągu roku z pewego ubezpieczeia, z czego: M to liczba szkód zgłoszoych przed końcem tego roku, K to liczba szkód które zostaą zgłoszoe w ciągu lat astępych, Zachodzi oczywiście N = M + K. Liczba szkód zgłoszoych przed końcem roku: M = Z + Z Z N, jest sumą składików, z których każdy przyjmuje wartość jede gdy daą szkodę zgłoszoo w ciągu roku, zaś zero, gdy zgłoszeie astąpiło późiej. Przyjmujemy, że zmiee losowe N, Z, Z 2, Z 3, są iezależe, oraz iż Z, Z 2, Z 3, mają taki sam rozkład: Pr(Z = ) = /2, Pr(Z = 0) = /2. Jeśli teraz założymy, że liczba szkód zaszłych w ciągu roku ma rozkład dwumiaowy o postaci: Pr(N = ) = ( 0 ) ( 5 ) ( 4 5 )0, = 0,,2,,0. to warukowa wartość oczekiwaa E(K M = 0) wyiesie: (A) (B) 0/9 (C) 4/3 (D) 5/3 (E) 2 9

10 Zadaie 0. Rozważamy klasyczy model procesu adwyżki Ut u ct S N t u to adwyżka początkowa ct to suma składek zgromadzoych do mometu t, S Y i i proces liczący t to łącza wartość szkód zaszłych do mometu t,, gdzie: N oraz wartości poszczególych szkód Y, Y2, Y3,... są iezależe, przy czym: N t jest procesem Poissoa z parametrem itesywości, wartości poszczególych szkód Y, Y2, Y3,... mają te sam rozkład wykładiczy o wartości oczekiwaej rówej c ( ), 0 Wiadomo, że zmiea losowa: L : sup u U( t) t 0 daje się przedstawić jako zmiea o rozkładzie złożoym: L l l... l 2 N, ( L 0 gdy N 0), gdzie składik l jest zmieą określoą w przypadku, gdy adwyżka spadie poiżej u, i rówy jest wtedy: l u U( t ), gdzie t jest tym mometem czasu, kiedy po raz pierwszy do takiego spadku doszło. Jeśli / 5, oraz u 3, to warukowa wartość oczekiwaa liczby takich spadków, pod warukiem że astąpiła ruia: wyosi: (A) 7 ( N L u) (B) 7 2 (C) 8 (D) 8 2 (E) 9 0

11 Egzami dla Aktuariuszy z 5 czerwca 205 r. Matematyka ubezpieczeń majątkowych Arkusz odpowiedzi * Imię i azwisko :...K L U C Z O D P O W I E D Z I... Pesel... Zadaie r Odpowiedź Puktacja C 2 B 3 B 4 E 5 D 6 E 7 A 8 C 9 B 0 D * Oceiae są wyłączie odpowiedzi umieszczoe w Arkuszu odpowiedzi. Wypełia Komisja Egzamiacyja.

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

ZADANIA NA ĆWICZENIA 3 I 4

ZADANIA NA ĆWICZENIA 3 I 4 Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

θx θ 1, dla 0 < x < 1, 0, poza tym,

θx θ 1, dla 0 < x < 1, 0, poza tym, Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X

Bardziej szczegółowo

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n. Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg

Bardziej szczegółowo

01. dla x 0; 1 2 wynosi:

01. dla x 0; 1 2 wynosi: Matematyka ubezpieczeń majątkowych 0.0.04 r. Zadanie. Ryzyko X ma rozkład z atomami: Pr X 0 08. Pr X 0. i gęstością: f X x 0. dla x 0; Ryzyko Y ma rozkład z atomami: Pr Y 0 07. Pr Y 0. i gęstością: fy

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część I. Matematyka finansowa Komisja Egzamiacyja dla Aktuariuszy XXXVI Egzami dla Aktuariuszy z 0 paździerika 2005 r. Część I Matematyka fiasowa Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Niech dur() ozacza duratio

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona

Ćwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Kurs Prawdopodobieństwo Wzory

Kurs Prawdopodobieństwo Wzory Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej. Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej. Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka.0.00 r. Zadaie Rozważy astępującą, uproszczoą wersję gry w,,woję. Talia składa się z 5 kart. Dobrze potasowae karty rozdajey dwó graczo, każdeu po 6 i układay w dwie kupki.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: E X 20 8 oraz znamy następujące charakterystyki dotyczące przedziału 10, 20 : 3 Pr

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Estymacja współczynnika dopasowania w klasycznym modelu ryzyka

Estymacja współczynnika dopasowania w klasycznym modelu ryzyka Ogólopolska Koferecja Naukowa Zagadieia Aktuariale Teoria i praktyka Warszawa, 9- czerwca 008 Estymacja współczyika dopasowaia w klasyczym modelu ryzyka Aa Nikodem Uiwersytet Ekoomiczy we Wrocławiu Klasyczy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. Niech łączna wartość szkód: Ma złożony rozkład Poissona. Momenty rozkładu wartości poedyncze szkody wynoszą:, [ ]. Wiemy także, że momenty nadwyżki wartości poedyncze szkody ponad udział własny

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 6.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Własości rozkładu ormalego Cetrale twierdzeie graicze Fukcja charakterystycza

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona: Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 3 maja 200 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 00 minut Komisja Nadzoru

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste

Statystyka opisowa. (n m n m 1 ) h (n m n m 1 ) + (n m n m+1 ) 2 +1), gdy n jest parzyste Statystyka opisowa Miary statystycze: 1. miary położeia a) średia z próby x = 1 x = 1 x = 1 x i - szereg wyliczający x i i - szereg rozdzielczy puktowy x i i - szereg rozdzielczy przedziałowy, gdzie x

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

0.1 Statystyczne Podstawy Modelu Regresji

0.1 Statystyczne Podstawy Modelu Regresji 0.1 Statystycze Podstawy Modelu Regresji iech daa będzie przestrzeń probabilistycza (Ω, F, P ). Fukcję X : Ω R, określoą a przestrzei zdarzeń elemetarych Ω, o wartościach rzeczywistych, takich że x R {ω

Bardziej szczegółowo

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)

Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności) IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym

Bardziej szczegółowo

MUMIO Lab 6 (składki, kontrakt stop-loss)

MUMIO Lab 6 (składki, kontrakt stop-loss) MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Estymacja puktowa i przedziałowa Marta Zalewska Zakład Profilaktyki Zagrożeń Środowiskowych i Alergologii Populacja Próba losowa (próbka) Parametry rozkładu Estymatory (statystyki) Własości estymatorów

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej:

Rozkład χ 2 = + 2π 2. Niech zmienna losowa x ma rozkład normalnyn(x; µ,σ). Znajdziemy rozkład zmiennej: Rozkład χ Niech ziea losowa a rozkład oralyn(; µ,). Zajdziey rozkład zieej: µ Stadaryzjąc zieą losową µ otrzyjey stadaryzoway rozkład Gassa: ( ;, ) ep N 0 π Rozkład zieej a więc postać: d ( X + ) N N ep

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 3.04.08 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 07/08 Wielowymiarowy rozkład Gaussa - przypomieie Cetrale twierdzeie graicze

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo