PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)
|
|
- Dominik Kaczmarczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (
2 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele średiej armeczej Model Browa Model Hola Modele aalicze Model wskaźików sezoowości Model Wiersa 2
3 Modele szeregów czasowch Modele szeregów czasowch: meoda aiwa, modele średiej armeczej prosej, ruchomej, ważoej, modele wgładzaia wkładiczego pros model wgładzaia wkładiczego (model Browa, model liiow Hola, model Wiersa, modele edecji rozwojowej, modele składowej periodczej:, meoda wskaźików, 3
4 Posać modelu - model addw Model addw zakłada się, że obserwowae warości zmieej progozowaej są sumą składowch szeregu czasowego; poszczególe składowe są od siebie iezależe = f ( + g( + h( + ξ E(ξ warość oczekiwaa składika losowego E( ξ = 0 f( - fukcja czasu charakerzująca edecję rozwojową (fukcja redu g( fukcja czasu charakerzująca wahaia sezoowe h( fukcja czasu charakerzująca wahaia cklicze ξ zmiea losowa (składik losow Każda ze składowch jes wrażoa w ch samch jedoskach miar co zmiea progozowaa. 4
5 Posać modelu model muliplikaw Model muliplikaw przjmuje się, że obserwowae warości zmieej progozowaej są iloczem składowch szeregu czasowego; zachodzą ierakcje pomiędz poszczególmi składowmi (korelacja = f ( g( h( ξ E(ξ warość oczekiwaa składika losowego E( ξ = f( - fukcja czasu charakerzująca edecję rozwojową (fukcja redu g( fukcja czasu charakerzująca wahaia sezoowe h( fukcja czasu charakerzująca wahaia cklicze ξ zmiea losowa (składik losow Tlko jeda ze składowch a ogół edecja rozwojowa lub sał (średi poziom progozowaej zmieej jes wrażaa w jedoskach zmieej progozowaej. Pozosałe składowe szeregu są w procesie dekompozcji wrażae jako względe odchleia bądź od edecji rozwojowej, bądź od średiego poziomu zmieej. 5
6 6 Posać modelu model miesza Model miesza eleme modelu addwego i muliplikawego, p.: h g f ξ + + = ( ( ( ( ( ( h g f + = ξ g h f ξ + = ( ( ( ( ( ( g h f + = ξ
7 Modele składowej periodczej Wahaia okresowe pewie ckl zmia powarzającch się w ch samch miej więcej rozmiarach (bezwzględch lub względch, co jakiś, w przbliżeiu sał, czas. Zjawisko zajduje się w ej samej fazie zmia w momeach lub okresach odległch od siebie w przbliżeiu o sał odsęp czasu lub jego wielokroość. Ckl (okres wahań okres, w kórm wsępują wszskie faz wahań. 7
8 Model Wiersa Model Wiersa opiera się a idei wrówwaia wkładiczego, a zasad budow ego modelu są aalogicze do modelu Browa i Hola. Model Wiersa może bć zasosowa, gd w szeregu czasowm wsępuje: edecja rozwojowa, wahaia sezoowe, wahaia przpadkowe. Sosowaie modelu Wiersa wmaga przjęcia przez progosę posaw paswej założeia: w okresie progozowam urzma się zaobserwowaa edecja rozwojowa, rodzaj i siła wahań sezoowch ie ulegą zmiaie. Progozę wzacza się w sposób sekwecj, korzsając z rzech rówań zawierającch rz paramer wgładzaia. Model Wiersa ma dwie posacie: addwą, muliplikawą. 8
9 Model Wiersa rówaia F S C Model muliiplikaw = α + C r β + ( α( F 2 S 2 β = ( F F 2 + ( S 2 = γ + ( γ C r F F S C Model addw α ( C r + ( α( F 2 S 2 = = β ( F F 2 + ( β S 2 = γ ( F + ( γ C r F S C r α, β, γ - wgładzoa warość zm. progozowaej w momecie lub okresie -, po elimiacji wahań sez. - wgładzoa warość przrosu redu w momecie lub okresie - - ocea wskaźika sezoowości a mome lub okres - - długość cklu sezoowego liczba faz - paramer modelu, przjmujące warości z przedziału [0,] 9
10 Model Wiersa ierpreacja paramerów modelu α~ 0 szereg sacjoar, α~ duże wahaia β ~ 0 słab red, β ~ sil red γ ~ 0 słabe wahaia sezoowe γ ~ sile wahaia sezoowe 0
11 Model Wiersa - progoza Rówaie progoz a mome lub okres > dla wersji addwej modelu: = [ F + S ( ] + Rówaie progoz a mome lub okres > dla wersji muliplikawej modelu: C r = [ F + S ( ] C r F S C r r - wgładzoa warość zm. progozowaej w okresie - przros redu a okres - wskaźik oceiając sezoowość w okresie -r - długość cklu sezoowego liczba faz - ilość okresów (obserwacji w szeregu
12 Wbór warości paramerów modelu Dobór warości paramerów α, β, γ: Jeżeli poszczególe składowe szeregu czasowego zmieiają się wolo α, β, γ bliskie zeru Jeżeli poszczególe składowe szeregu czasowego zmieiają się szbko α, β, γ bliskie jedości α~ 0 szereg sacjoar, α~ duże wahaia β ~ 0 słab red, β ~ sil red γ ~ 0 słabe wahaia sezoowe γ ~ sile wahaia sezoowe 2
13 Wbór warości paramerów modelu Za warości począkowe F, S, C,, C r moża przjąć p: F rzeczwisą warość zmieej odpowiadającą pierwszej fazie drugiego cklu średią z warości zmieej w pierwszm cklu S różicę drugiej i pierwszej warości zmieej progozowaej różicęśredich warości zmieej z drugiego i pierwszego cklu zero, C (w poszczególch fazach cklu iloraz (lub różice warości rzeczwisej zmieej z pierwszego cklu w odiesieiu do średiej warości w pierwszm cklu jede 3
14 ZADANIE Model Wiersa Firma Graa prowadzi sprzedaż moiorów LCD. Dae doczące kwaralej wielkości sprzedaż z la przedsawioo w Tabeli. Należ wzaczć przewidwaą wielkość sprzedaż moiorów LCD w kolejch kwarałach 2007r. α=0,5 β= 0,95 γ=0,2 4
15 Modele Wiersa OBSERWACJE: Sprzedaż moiorów LCD charakerzuje się sezoowością. ajwższa sprzedaż - w I i IV kwarałach ajiższa sprzedaż - w III kwarałach. Spadkowa edecja sprzedaż w laach Rosąca edecja sprzedaż w laach MODEL WINTERSA Posać muliplikawa 5
16 Modele Wiersa - rówaia α Wgładzoa warość zmieej w szeregu czasowm po elimiacji wahań sezoowch a mome -: + ( α( F 2 S 2 F = + C r Wgładzoa warość przrosu redu a mome -: S β β = ( F F 2 + ( S 2 Ocea wskaźików sezoowości a mome -: C = γ + ( γ C r F Rówaie progoz a mome >: = [ F + S ( ] C r 6
17 Model Wiersa warości począkowe paramerów Za warości począkowe F, S, C,, C r moża przjąć p: F rzeczwisą warość zmieej odpowiadającą pierwszej fazie drugiego cklu średią z warości zmieej w pierwszm cklu S różicę drugiej i pierwszej warości zmieej progozowaej różicęśredich warości zmieej z drugiego i pierwszego cklu zero, C (w poszczególch fazach cklu iloraz (lub różice warości rzeczwisej zmieej z pierwszego cklu w odiesieiu do średiej warości w pierwszm cklu jede 7
18 Model Wiersa F = α + ( α(f 2 + S 2 C S C = β(f = γ F r F 2 + ( γ C + ( β S r 2 α = 0,5 β = 0,95 γ = 0,2 F S C,33 0,93 0,67,07 450,00-50,00,27 387,50-6,88 0,93 32,8-74,05 0,66 260,0-53,87,08 24,23-20,53,30 28,9-22,92 0,93 2,06-7,9 0,67 286,06 70,85,5 Warości począkowe F = 5 5 = = ( ( = = S 4 C 4 = = F 6? S 6? S 6 S 5 - różica średich warości F 5 - rzeczwisa warość zmieej z drugiego i zmieej odpowiadająca pierwszego cklu pierwszej fazie drugiego cklu ( Obliczeia 3 4 C 5?,33 C = = ( F 6 = 0,5 + ( 0,5( = 387,5 0,93 = 0,95 (387, ( 0,95 ( C 6 = 0,2 + ( 0,2 0,93 = 0,93 387,5 C C, C r - iloraz warości rzeczwisej zmieej z pierwszego cklu w odiesieiu do średiej warości w pierwszm cklu 5 5 = 0,2 + ( 0,2 C5 4 F ,93 = 6,88 8
19 Model Wiersa wzaczeie progoz = [ F + S ( ] C r 25 = [ F24 + S24(25 24] C25 4 = [588,85 9,09],3 760sz 26 = [ F24 + S24(26 24] C26 4 = [588,85 9,09 2] 0,89 50sz 27 = [ F24 + S24(27 24] C27 4 = [588,85 9,09 3] 0,67 375sz 28 = [ F24 + S24(28 24] C28 4 = [588,85 9,09 4],5 634sz 9
20 Modele Wiersa progoz a okres wgasłe Progoz a okres wgasłe??? = [ F + S ( ] C r 6 = [ F5 + S5(6 5] C6 4 = = [450 50] 0,93 = 373,33 7 = [ F6 + S6(7 6] C7 4 = = [387,7 6,88] 0,67 = 27,08 24 = [ F23 + S23(24 23] C24 4 = = [599,33 7,22],6 = 74,4 20
21 Modele Wiersa błęd progoz ex pos Średi kwadraow błąd progoz dla progoz wgasłch??? s = = ( 2 =? = 24 = 9 9 = ( 2 = 8860,29 s = 8860,29 68 sz 9 2
22 Modele Wiersa błęd progoz ex pos Średi względ błąd progoz dla progoz wgasłch??? ψ = = 00 =? = 9 9 = = 26,9 ψ = 9 26,9 = 3,78 22
23 Dziękuj kuję za uwagę mgr iż.. Mara Krueger el.: (
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
PROGNOZY I SYMULACJE
orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/
PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.
PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.
Prognozowanie i symulacje
Progozowaie i smulacje Ramow pla wkładu. Wprowadzeie w przedmio. rafość dopuszczalość i błąd progoz 3. Progozowaie a podsawie szeregów czasowch 4. Progozowaie a podsawie modelu ekoomerczego 5. Heurscze
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego
D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia
WSPOMAGANIE PROCESÓW DECYZYJNYCH
WSPOMAGANIE PROCESÓW DECYZYJNYCH doc. dr Beaa Pułaska-Tura Zakład Badań Operacjch Zarządzaia, pokój B505 e-mail: urab@mail.wz.uw.edu.pl el: (22) 55 34 44 Mgr Pior Ja Gadecki e-mail: ifo@pgadecki.pl www:
Szereg czasowy z trendem. Model Holta. Stosujemy dwa równania rekurencyjne: I - słuy do wyznaczania wygładzonych wartoci szeregu czasowego w chwili t
zeeg czasow z edem. Model Hola. osujem dwa ówaia ekuecje: I - słu do wzaczaia wgładzoch waoci szeegu czasowego w chwili F = + ( )( + α α F ) II - słu do wzaczaia wgładzoch waoci pzosu edu w chwili = β
Prognozowanie na podstawie szeregów czasowych.
Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa
Metody statystyczne w naukach biologicznych
Meod sascze w aukach biologiczch 6-6- Wkład: Szeregi czasowe i progozowaie Aaliza damiki iesie ze sobą ową jakość. Pozwala oa zbadać rozkład cech sasczej w czasie. Szeregi damicze przedsawiają kszałowaie
PROGNOZY I SYMULACJE
oecasig is he a of saig wha will happe, ad he explaiig wh i did. h. hafield 98 PROGNOZY I YMULAJE Kaaza hud Laskowska kosulacje: p. 00A śoda - czwaek - soa ieeowa: hp://kc.sd.pz.edu.pl/ WYKŁAD VIII zeegi
EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą
EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/
Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n
Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam
Analiza szeregów czasowych uwagi dodatkowe
Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej.
Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej
KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1
ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,
Dane modelu - parametry
Dae modelu - paramer ˆ Ozaczea zmech a0 ax ax - osz w s. zł Budowa modelu: x - welość producj w seach o x - welość zarudea w osobach Meoda MNK Dae: x x 34 9 0 60 34 9 0 60 35 3 7 35 3 7 X T 0 9 3 4 5 3
Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1
PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,
Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.
Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
MODEL TENDENCJI ROZWOJOWEJ
MODEL TENDENCJI ROZWOJOWEJ Model endencji rozwojowej o konsrukcja eoreczna (równanie lub układ równań) opisująca kszałowanie się określonego zjawiska jako funkcji: zmiennej czasowej wahań okresowch (sezonowe
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Zajęcia 2. Estymacja i weryfikacja modelu ekonometrycznego
Zajęcia. Esmacja i werfikacja modelu ekonomercznego Celem zadania jes oszacowanie liniowego modelu opisującego wpłw z urski zagranicznej w danm kraju w zależności od wdaków na urskę zagraniczną i liczb
1. Element nienaprawialny, badania niezawodności. Model matematyczny elementu - dodatnia zmienna losowa T, określająca czas życia elementu
Badaia iezawodościowe i saysycza aaliza ich wyików. Eleme ieaprawialy, badaia iezawodości Model maemayczy elemeu - dodaia zmiea losowa T, określająca czas życia elemeu Opis zmieej losowej - rozkład, lub
STATYSTYKA OPISOWA PODSTAWOWE WZORY
MIARY POŁOŻENIA Średia Dla daych idywidualych: x = 1 STATYSTYKA OPISOWA PODSTAWOWE WZORY x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału Domiata (moda Liczba ajczęściej
TRANZYSTORY POLOWE JFET I MOSFET
POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora
MIANO ROZTWORU TITRANTA. Analiza statystyczna wyników oznaczeń
MIANO ROZTWORU TITRANTA Aaliza saysycza wyików ozaczeń Esymaory pukowe Średia arymeycza x jes o suma wyików w serii podzieloa przez ich liczbę: gdzie: x i - wyik poszczególego ozaczeia - liczba pomiarów
Prognozowanie i symulacje
Prognozowanie i smulacje Ramow plan wkładu.wprowadzenie w przedmio.rafność dopuszczalność i błąd prognoz 3.Prognozowanie na podsawie szeregów czasowch 4.Prognozowanie na podsawie modelu ekonomercznego
PROGNOZOWANIE. mgr inż. Martyna Malak. Katedra Systemów Logistycznych.
1 PROGNOZOWANIE Kaedra Ssemów Logiscznch mgr inż. Marna Malak marna.malak@wsl.com.pl Panel TABLICE 1 2 3 DEFINICJA PROGNOZY Prognozowanie? Przewidwanie 4 DEFINICJA PRZEWIDYWANIA Przewidwanie wnioskowanie
. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia):
D Miszczńska, M Miszczński, KBO UŁ, Eleme programowaia damiczego Eleme PROGRAMOWANIA DYNAMICZNEGO (PD) Rozważam -eapow proces deczj: eap eap 2 eap - eap sa począkow 2 deczja x x x 2 x Sa procesu a począek
Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych
Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe
PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński
Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne
KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI
KRÓTKOTERMINOWE PROGNOZOWANIE WIELKO CI UDZIAŁU KOMPONENTÓW USZKODZONYCH W PRODUKCJI CAŁKOWITEJ Z WYKORZYSTANIEM KLASYCZNYCH METOD PREDYKCJI WOJCIECH WO NIAK, JERZY MIKULIK Sreszczeie W pracy zaprezeowao
Wygładzanie metodą średnich ruchomych w procesach stałych
Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja
PROGNOZY I SYMULACJE
Forecasing is he ar of saing wha will happen, and hen explaining wh i didn. Ch. Chafield (986) PROGNOZY I SYMULACJE Kaarzna Chud Laskowska konsulacje: p. 400A środa -4 czwarek -4 srona inerneowa: hp://kc.sd.prz.edu.pl/
Instytut Logistyki i Magazynowania
Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA
1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje
Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Sygnały pojęcie i klasyfikacja, metody opisu.
Sygały pojęcie i klasyfikacja, meody opisu. Iformacja przekazywaa jes za pośredicwem sygałów, kóre przeoszą eergię. Sygał jes o fukcja czasowa dowolej wielkości o charakerze eergeyczym, w kórym moża wyróżić
PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny
OCENA POPYTU POPYT POJĘCIA WSTĘPNE. Definicja: Popyt to ilość dobra, jaką nabywcy gotowi są zakupić przy różnych poziomach ceny.
OCENA POPYTU POPYT POJĘCIA WSTĘPNE Defiicja: Pop o ilość dobra, jaką abwc goowi są zakupić prz różch poziomach ce. Deermia popu: (a) Cea daego dobra (b) Ilość i ce dóbr subsucjch (zw. kokurecjch) (c) Ilość
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
I. Podzielność liczb całkowitych
I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc
Ocena dopasowania modelu do danych empirycznych
Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi
z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Miary położenia (tendencji centralnej) to tzw. miary przeciętne charakteryzujące średni lub typowy poziom wartości cechy.
MIARY POŁOŻENIA I ROZPROSZENIA WYNIKÓW SERII POMIAROWYCH Miary położeia (tedecji cetralej) to tzw. miary przecięte charakteryzujące średi lub typowy poziom wartości cechy. Średia arytmetycza: X i 1 X i,
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Stanisław Cichocki Natalia Nehrebecka. Wykład 5
Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA
ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU
ZASTOSOWANIE ZMODYFIKOWANEJ METODY WSKA NIKÓW SEZONOWO CI DO PROGNOZOWANIA WIELKO CI POPYTU KRZYSZTOF JURCZYK, MARCIN BARAN, WOJCIECH WO NIAK Sreszczeie W prac zaprezeowao model krókoermiowego progozowaia
Twierdzenia graniczne:
Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości
Statystyka Inżynierska
aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Ekonometria I materiały do ćwiczeń
lp daa wkładu ema Wkład dr Doroa Ciołek Ćwiczenia mgr inż. - Rodzaje danch sascznch - Zmienne ekonomiczne jako zmienne losowe 1a) Przkład problemów badawczch hipoeza, propozcja modelu ekonomercznego, zmienne
MODELOWANIE I PROGNOZOWANIE
L.Kowalsk-Modelowae progozowae MODELOWANIE I PROGNOZOWANIE MATERIAŁY DYDAKTYCZNE o Podsawowe charakersk dach sasczch, o Ideks, o Progozowae- wadomośc wsępe, o Modele ekoomercze, o Jedorówaow model low,
Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.
Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji
Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego
Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez
Erlanga. Znajdziemy rozkład czasów oczekiwania na n-te zdarzenie. Łączny czas oczekiwania. na n zdarzeń dany jest przez: = u-v i t 2.
Rozład Erlaga Zajdziem rozład czasów oczeiwaia a -e zdarzeie. Łącz czas oczeiwaia a zdarzeń da jes przez: M. Przbcień Rachue prawdopodobieńswa i sasa ( (- gdzie E ; λ λ exp λ Podobie zajdujem: E ( ; E(
ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**
Góricwo i Geoiżyieria Rok 30 Zeszy 3/ 006 Dariusz Foszcz* ESTYMACJA PARAMETRÓW FUNKCJI REGRESJI METODĄ KLASYCZNĄ ORAZ METODAMI BOOTSTRAPOWYMI**. Wsęp W zmieiającej się rzeczywisości przebiegu procesów
3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez
MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,
Obligacja i jej cena wewnętrzna
Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59),
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Uiv. Techol. Steti. 200, Oecoomica 280 (59), 99 08 Celia Skrobisz PROGNOZOWANIE BAYESOWSKIE W PRZYPAKU BRAKU PEŁNEJ INFORMACJI NA PRZYKŁAZIE
Przełączanie diody. Stan przejściowy pomiędzy stanem przewodzenia diod, a stanem nieprzewodzenia opisuje się za pomocą parametru/ów czasowego/ych.
Przełączaie diody 1. Trochę eorii a przejściowy pomiędzy saem przewodzeia diod, a saem ieprzewodzeia opisuje się za pomocą parameru/ów czasowego/ych. Mamy więc ajprosszy eleme półprzewodikowy (dwójik),
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Podprzestrzenie macierzowe
Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy
Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Statystyka Wzory I. Analiza struktury
Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Wykład 7: Układy dynamiczne
Wykład 7: Układy dyamicze Fizyka kompuerowa 5/6 Kaarzya Wero, kwero@if.ui.wroc.pl Zamias wsępu Naukowiec ie bada przyrody dla jej użyeczości; bada ją poieważ się ią rozkoszuje... [Poicare] Pla Sabilość
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:
Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową
Modele zmienności aktywów ryzykownych. Model multiplikatywny Rozkład logarytmiczno-normalny Parametry siatki dwumianowej
Moele zmieości akywów ryzykowych Moel muliplikaywy Rozkła logarymiczo-ormay Paramery siaki wumiaowej Moel muliplikaywy zmieości akywów Rekurecyjy moel muliplikaywy: (=, (k+ = (k u(k, k=,, Cea akywa w chwili
Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu
Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,
Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Dr hab. iż. Władysław Arur Woźiak Wykład FIZYKA I. Kiemayka puku maerialego Dr hab. iż. Władysław Arur Woźiak Isyu Fizyki Poliechiki Wrocławskiej hp://www.if.pwr.wroc.pl/~woziak/fizyka1.hml Dr hab. iż.
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
ĆWICZENIE 6. Komputerowe wspomaganie analizy i syntezy układów sterowania Liniowe układy jedno- oraz wielowymiarowe
ĆWIZENIE 6 Kompuerowe wspomagaie aaliz i sez układów serowaia Liiowe układ jedo- oraz wielowmiarowe 6. el ćwiczeia odsawowm celem ćwiczeia jes ugruowaie wiadomości z zakresu projekowaia sez oraz smulacji
Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.
Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują
Wykład 2b. Podstawowe zadania identyfikacji. Wybór optymalnego modelu
Wkład b. odstawowe zadaia idetfikaci. Wbór optmalego model Wiki: wioski i hipotez metod proektowaia metod zarządzaia algortm sterowaia metod diagostcze odiesieie wików do obiekt Efekt: owa wiedza owe obiekt
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Zasady budowania prognoz ekonometrycznych
Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi
ANALIZA KORELACJI IREGRESJILINIOWEJ
ANALIZA KORELACJI IREGRESJILINIOWEJ 1. ZALEŻNOŚCI STOCHASTYCZNE Badajac zjawiska o charakterze masowym, w tym szczególie zjawiska spo leczo-ekoomicze, stwierdzamy, że każde z ich jest uwarukowae dzia laiem
oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Estymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Narzędzia matematyczne potrzebne w kursie Reakcje w ciele stałym
Narzędzia maemacze porzebe w kursie Reakcje w ciele sałm Pochoda fukcji jedej zmieej Defiicja, własości rachukowe, wzór a pochodą fukcji złożoej, szereg Talora, pochode fukcji elemearch. Pochoda fukcji
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
oznacza przyrost argumentu (zmiennej niezależnej) x 3A82 (Definicja). Granicę (właściwą) ilorazu różnicowego funkcji f w punkcie x x x e x lim x lim
WYKŁAD 9 34 Pochodna nkcji w pnkcie Inerpreacja geomerczna pochodnej Własności pochodnch Twierdzenia Rolle a Lagrange a Cach ego Regla de lhôspiala Niech ( ) O( ) będzie nkcją określoną w pewnm ooczeni
t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody
ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji
Sygnały zmienne w czasie
Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne