1 Twierdzenia o granicznym przejściu pod znakiem całki

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Twierdzenia o granicznym przejściu pod znakiem całki"

Transkrypt

1 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae są fukcje proste f, f : R +, = 1, 2,... oraz f f, to lim f (x)dµ = f(x)dµ. Twierdzeie 1.2. Jeżeli dae są dwa ciągi fukcji prostych f, g : R + takie, że 1. f i g są fukcjami iemalejącymi, 2. f f oraz g f, gdzie f : R + jest daą fukcją (iekoieczie fukcją prostą), to lim f (x)dµ = lim g (x)dµ. Twierdzeie 1.3 (Lebesgue a). Niech f : R będzie daym ciągiem fukcji mierzalych. Wtedy: 1. Jeżeli f jest ciągiem iemalejącym fukcji całkowalych,to lim f (x)dµ = (lim f )(x)dµ. 2. Jeżeli f jest ciągiem ierosącym fukcji całkowalych, to lim f (x)dµ = (lim f )(x)dµ. Lemat 1.4 (Fatou). Dla dowolego ciągu fukcji mierzalych ieujemych f : R + zachodzi ierówość: lim if f (x)dµ (lim if f )(x)dµ. Twierdzeie 1.5 (Lebesgue a o zmajoryzowaym przechodzeiu do graicy pod zakiem całki). Jeżeli f : R jest ciągiem fukcji mierzalych zbieżym puktowo do fukcji f : R oraz dla każdego i każdego x zachodzi f (x) g(x), gdzie g : R jest fukcją całkowalą, to lim f (x)dµ = (lim f )(x)dµ Twierdzeie 1.6 (o jedostajym przechodzeiu do graicy pod zakiem całki). Jeżeli f : R jest ciągiem fukcji całkowalych jedostajie zbieżym do fukcji f : R oraz jeżeli µ() < +, to lim f (x)dµ = (lim f )(x)dµ 1

2 Twierdzeie 1.7 (o całkowaiu szeregów ieujemych). Niech f : R + będzie ciągiem fukcji mierzalych. Jeżeli szereg f jest puktowo zbieży a, to ( f )(x)dµ = f (x)dµ =1 =1 Twierdzeie 1.8 (Kryterium całkowe zbieżości szeregów fukcyjych). Jeżeli day jest ciąg fukcji całkowalych f : R taki, że f (x)dµ jest zbieży, to szereg f (x)dµ jest zbieży oraz =1 ( f )(x)dµ = f (x)dµ =1 =1 =1 2 Zmiee losowe, wektory losowe i ich charakterystyki (p. wartości oczekiwae, wariacje, rozkłady) Jeżeli f : Ω 1 Ω 2 jest odwzorowaiem mierzalym, to ozaczamy je f : (Ω 1, F 1 ) (Ω 2, F 2 ), gdzie F 1 (F 2 ) jest σ-ciałem zbiorów mierzalych a Ω 1 (Ω 2 ). Defiicja 2.1. Przestrzeią probabilistyczą azywamy układ trzech elemetów (Ω, F, P ), gdzie: 1. Ω jest pewym zbiorem, zwaym przestrzeią zdarzeń elemetarych, 2. F jest σ-ciałem podzbiorów zbioru Ω. Elemety tego σ-ciała azywae są zdarzeiami, 3. P : F [0, 1] jest miarą probabilistyczą, to zaczy (a) P (A) 0 dla każdego A F, (b) P (Ω) = 1, ( ) (c) jeżeli zbiory A 1, A 2,... F są parami rozłącze, to P A i = P (A i). W dalszym ciągu będziemy zakładać, że daa jest przestrzeń probabilistycza (Ω, F, P ). Zdefiiujmy odwzorowaie charakterystycze zbioru A Ω: χ A : Ω R wzorem: { 1, gdy x A χ A (x) = 0, gdy x / A Defiicja 2.2. Niech X będzie przestrzeią topologiczą. σ-ciałem zbiorów borelowskich azywamy ajmiejsze σ-ciało a X zawierające zbiory otwarte. Defiicja 2.3. Zmieą losową a przestrzei (Ω, F, P ) azywamy dowolą fukcję mierzalą X : (Ω, F) (R, B), gdzie B jest σ-ciałem zbiorów borelowskich a R. Uwaga 2.1. Zauważmy, że: 1. X : Ω R jest zmieą losową wtedy i tylko wtedy, gdy a R {ω Ω : X(ω) a} F 2. X jest prostą zmieą losową (to zaczy przyjmującą skończeie wiele wartości) wtedy i tylko wtedy, gdy X = a iχ Ai, gdzie a 1,..., a R, A 1,..., A F oraz A i A j = dla i j. 3. Jeżeli X jest zmieą losową oraz ϕ: (R, B) (R, B), to ϕ(x) jest także zmieą losową. 2

3 4. Jeżeli X jest zmieą losową to przez σ(x) ozaczamy σ-ciało geerowae przez zmieą losową X, to zaczy: σ(x) = {X 1 (B) : B B} = X 1 (B) Defiicja 2.4. Zdefiiujmy: 1. Rozkładem prawdopodobieństwa a R azywamy każdą miarę probabilistyczą µ a (R, B). 2. Rozkładem prawdopodobieństwa zmieej losowej X azywamy rozkład prawdopodobieństwa P X a (R, B) określoy wzorem: B B P X (B) = P (X 1 (B)) = P ({ω Ω : X(ω) B}) Defiicja 2.5. d-wymiarowym wektorem losowym a (Ω, F, P ) azywamy odwzorowaie mierzale X = (X 1,..., X d ): (Ω, F) (R d, B d ), gdzie B d jest σ-ciałem zbiorów borelowskich a R d. Uwaga 2.2. X jest wektorem losowym a (Ω, F, P ) wtedy i tylko wtedy, gdy dla każdego i {1,... d} X i jest zmieą losową a (Ω, F, P ). Defiicja 2.6. Zdefiiujmy: 1. Rozkładem prawdopodobieństwa a R d azywamy każdą miarę probabilistyczą µ a (R d, B d ). 2. Rozkładem prawdopodobieństwa wektora losowego X azywamy rozkład prawdopodobieństwa P X a (R d, B d ) określoy wzorem: Defiicja 2.7. Niech d {1, 2,...}. B B d P X (B) = P (X 1 (B)) = P ({ω Ω : X(ω) B}) = P (X B) 1. Dystrybuatą rozkładu µ a R d azywamy fukcję F µ : R d [0, 1] daą wzorem: d F µ (a 1,..., a d ) = µ( (, a i ]) dla a 1,..., a d R. 2. Dystrybuatą wektora losowego X = (X 1,..., X d ) azywamy dystrybuatę jego rozkładu P X i ozaczamy F X lub F (X1,...,X d ): F X (a 1,..., a d ) = P (X d (, a i ]) = P (X 1 a 1,..., X d a d ) Uwaga 2.3. Dystrybuata wyzacza rozkład, to zaczy, jeżeli µ, ν są rozkładami prawdopodobieństwa a R oraz F µ = F ν, to µ = ν. Twierdzeie 2.4 (Własości dystrybuaty). Dystrybuata F µ ma astępujące własości: 1. F µ jest fukcją iemalejącą, 2. F µ jest prawostroie ciągła, 3. lim a F µ (a) = 0 oraz lim a + F µ (a) = 1. Defiicja 2.8. Niech X będzie wektorem losowym. Wówczas: 1. X ma rozkład dyskrety, jeżeli istieją wektory X 1, X 2,... R d oraz liczby p 1, p 2,... R +, i 1 p i = 1 takie, że P (X = x i ) = p i dla i = 1, 2,... 3

4 2. X ma rozkład absolutie ciągły z gęstością p(x), gdzie p: R d R +, R d p(x)dx = 1, jeżeli: B B dp X (B) = P (X B) = B p(x)dx 3. X ma rozkład osobliwy, jeżeli istieje zbiór B R d o mierze Lebesgue a zerowej, to zaczy l d (B) = 0 taki, że P X (B) = P (X B) = 1 oraz X ma rozkład ciągły, to zaczy x R d P (X = x) = 0 Ozaczmy: gdzie p > 0 Defiicja 2.9. Zdefiiujmy: L 1 (Ω, F, P ) = {X : X dp < } L p (Ω, F, P ) = {X : X p dp < }, 1. Dla X L 1 (Ω, F, P ) jej wartością oczekiwaą azywamy liczbę EX = XdP 2. Dla X L 2 (Ω, F, P ) jej wariacją azywamy liczbę: Ω Ω Ω D 2 (X) = E(X EX) 2 3. Dla X L p (Ω, F, P ), p > 0 jej elemetem absolutym rzędu p azywamy liczbę m p = E X p. 4. Dla X, Y L 2 (Ω, F, P ) ich kowariacją azywamy liczbę: cov(x, Y ) = E(X EX)(Y EY ) 5. Dla X L 2 (Ω, F, P ) jej odchyleiem stadardowym azywamy liczbę D(X) = D 2 (X) Twierdzeie 2.5. Niech X, Y L 2 (Ω, F, P ) 1. D 2 (X) = EX 2 (EX) 2, 2. c R D 2 (cx) = c 2 D 2 (X), 3. c R D 2 (X + c) = D 2 (X), 4. D 2 (X) = 0 P (X = EX) = 1, 5. cov(x, X) = D 2 (X), 6. D(X + Y ) D(X) + D(Y ) 7. D 2 (X ± Y ) = D 2 (X) + D 2 (Y ) ± 2cov(X, Y ) Defiicja Niech X = (X 1,..., X d ) będzie wektorem losowym. Wówczas: 1. Wartością oczekiwaą wektora losowego azywamy wektor EX = (EX 1,..., EX d ), o ile wszystkie współrzęde mają wartością oczekiwaą. 4

5 2. Macierzą kowariacji wektora X azywamy macierz: to zaczy ov(x) = [cov(x i, X j )], gdzie i, j {1,... d}, ov(x) ij = cov(x i, X j ) = E(X i EX i )(X j EX j ) dla i, j {1, 2,..., d}, o ile wszystkie cov(x i, X j ) są dobrze określoe. 3. Wariacją wektora X azywamy ślad macierzy ov(x), to zaczy: gdzie X = D 2 (X) = d cov(x i, X i ) = X2 i D 2 (X i ) = E( (X i EX i )) = E X EX 2, Jeżeli X jest zmieą losową a Ω o rozkładzie dyskretym z fukcją prawdopodobieństwa P, to EX = Jeżeli X ma rozkład ciągły z gęstością f, to: ω i P (X = ω i ) EX = + xf(x)dx 3 Niezależość zmieych losowych (oraz zdarzeń i rodzi zdarzeń). Schemat Beroullego. Defiicja 3.1. Niech (Ω, F, P ) będzie przestrzeią probabilistyczą oraz iech A 1,..., A d F będą zdarzeiami. Zdarzeia A 1,..., A d azwiemy iezależymi, jeżeli P (A 1... A d ) = P (A 1 )... P (A d ). Jeżeli {A i } i I F jest rodzią zdarzeń, to powiemy, że jest oa iezależa, jeżeli dowola skończoa podrodzia jest iezależa, to zaczy: dla dowolego układu {i 1,... i k } I zmiee losowe A i1,... A ik są iezależe. Uwaga 3.1. Jeżeli zdarzeia A 1,..., A d F są iezależe, to oczywiście każda para zdarzeń jest iezależa. W drugą stroę wyikaie ie jest prawdziwe. Defiicja 3.2. Zdefiiujmy: 1. Zmiee losowe X 1, X 2,..., X d określoe a przestrzei probabilistyczej (Ω, F, P ) azywamy iezależymi, jeżeli dla dowolych zbiorów borelowskich B 1,..., B d B mamy: P (X 1 B 1,... X d B d ) = P (X 1 B 1 )... P (X d B d ) 2. Zmiee losowe {X i } i I tworzą rodzię iezależych zmieych losowych, jeżeli każdy ich skończoy podzbiór składa się z iezależych zmieych losowych. Uwaga 3.2. Jeżeli {X i } i I tworzy rodzię iezależych zmieych losowych, to dla I 0 I mamy, że {X i } i I0 rówież tworzy rodzię iezależych zmieych losowych. Defiicja 3.3. Zdefiiujmy: 5

6 1. Rozkładem łączym zmieych losowych X 1,... X d azywamy rozkład wektora losowego X = (X 1,... X d ). Ozaczamy go symbolem P (X1,...,X d ). 2. Rozkładami brzegowymi wektora X = (X 1,... X d ) azywamy rozkłady jego współrzędych X 1,... X d. Twierdzeie 3.3. Niech X 1,... X d będą zmieymi losowymi a przestrzei (Ω, F, P ). Następujące waruki są rówoważe: 1. Zmiee losowe są iezależe 2. P (X1,...,X d ) = P X1... P Xd 3. Dla wszystkich a 1,... a d R mamy: F (X1,...,X d )(a 1,... a d ) = F X1 (a 1 )... F Xd (a d ) Wiosek 3.4. Zmiee losowe o rozkładach dyskretych X 1,... X d są iezależe wtedy i tylko wtedy, gdy dla dowolych y 1,..., y d R takich, że P (X i = y i ) > 0 dla i {1, 2,..., d} zachodzi waruek: P (X 1 = y 1,..., X d = y d ) = P (X 1 = y 1 )... P (X d = y d ) Twierdzeie 3.5. Niech A 1,... A d będą zdarzeiami a (Ω, F, P ). Zmiee losowe χ A1,..., χ Ad są iezależe wtedy i tylko wtedy, gdy zdarzeia A 1,... A d są iezależe. Fukcja p jest gęstością rozkładu P (X1,...,X d ), jeżeli dla każdego B B d zachodzi: P ((X 1,..., X d ) B) = p(x)dx. Twierdzeie 3.6. Jeżeli X 1,... X d są zmieymi losowymi o rozkładach ciągłych z gęstościami odpowiedio p 1 (x),... p d (x), to zmiee te są iezależe wtedy i tylko wtedy, gdy P (X1,...,X d ) jest rozkładem absolutie ciągłym z gęstością p(x) = p 1 (x 1 )... p d (x d ) Defiicja 3.4. Niech (Ω, F, P ) będzie przestrzeią probabilistyczą. 1. σ-ciała F 1,..., F d F azywamy iezależymi, jeśli P (A 1... A d ) = P (A 1 )... P (A d ) dla dowolych A 1 F 1,..., A d F d. 2. σ-ciała {F i } i I tworzą rodzię iezależych σ-ciał, jeżeli każdy ich skończoy podzbiór składa się z iezależych σ-ciał. Twierdzeie 3.7. Dla zmieych losowych X 1,..., X d a (Ω, F, P ) astępujące waruki są rówoważe: 1. X 1,..., X d sa iezależe. 2. σ-ciała σ(x 1 ),..., σ(x d ) są iezależe. 3. Dla dowolych fukcji borelowskich f 1,..., f d : (R, B) (R, B) zmiee losowe f 1 (X 1 ),... f d (X d ) są iezależe. Twierdzeie 3.8. Jeżeli X, Y są iezależymi zmieymi losowymi całkowalymi, to zaczy X, Y L 1 (Ω, F, P ), to: 1. XY L 1 (Ω, F, P ), 2. E(XY ) = EXEY. Wiosek 3.9. Jeżeli X, Y są iezależymi zmieymi losowymi, a f 1,... f d : (R, B) (R, B) fukcjami borelowskimi takimi, że E f i (X i ) < + dla i {1,... d}, to f 1 (X 1 )... f d (X d ) jest całkowalą zmieą losową oraz: E(f 1 (X 1 )... f d (X d )) = Ef 1 (X 1 )... Ef d (X d ) B 6

7 Defiicja 3.5. Mówimy, że zmiee losowe {X i } i I są ieskorelowae, jeżeli dla wszystkich i, j I, i j mamy: cov(x i, X j ) = 0. Jeżeli zmiee losowe są iezależe, to są ieskorelowae. Twierdzeie Jeżeli X 1,..., X d są ieskorelowaymi zmieymi losowymi, to D 2 ( X i ) = D 2 (X i ) Schematem Beroulliego azywamy skończoy ciąg iezależych powtórzeń tego samego doświadczeia o dwóch możliwych wyikach azywaych sukcesem i porażką. W schemacie Beroullego: 1. Poszczególe doświadczeia wykoywae są iezależie. 2. Wyikiem doświadczeia jest sukces (symboliczie 1) lub porażka (symboliczie 0). 3. Prawdopodobieństwo sukcesu jest dla każdej próby takie samo i wyosi p (0, 1) oraz prawdopodobieństwo porażki wyosi 1 p. Przestrzeń probabilistycza odpowiadająca temu schematowi: Ω = {(ω 1,..., ω ) : ω i {0, 1}, i = 1,..., } F = 2 Ω ω i P ((ω 1,..., ω )) = p (1 p) ω i Twierdzeie Prawdopodobieństwo pojawieia się dokładie k sukcesów w schemacie prób Beroullego, z prawdopodobieństwem sukcesu w pojedyczej próbie rówym p, wyosi ( k) p k (1 p) k. Jeżeli S jest zmieą losową, która opisuje to prawdopodobieństwo, to: 1. ES = p 2. D 2 (S ) = p(1 p) 7

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska

Zestaw zadań do skryptu z Teorii miary i całki. Katarzyna Lubnauer Hanna Podsędkowska Zestaw zadań do skryptu z Teorii miary i całki Katarzya Lubauer Haa Podsędkowska Ciała σ - ciała. Zbadaj czy rodzia A jest ciałem w przestrzei X=[0] a) A = X 0 b) A = X 0 3 3 c) A = { X { }{}{ 0}{ 0 }

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Kurs Prawdopodobieństwo Wzory

Kurs Prawdopodobieństwo Wzory Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa

Bardziej szczegółowo

Twierdzenia graniczne:

Twierdzenia graniczne: Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE

ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest

Bardziej szczegółowo

1. Miara i całka Lebesgue a na R d

1. Miara i całka Lebesgue a na R d 1. Miara i całka Lebesgue a a R d 1. Miara. Mówimy, że rodzia podzbiorów S zbioru Ω jest σ-ciałem, jeśli wraz z każdym zbiorem zawiera oa jego dopełieie i jest zamkięta a sumowaie przeliczalych podrodzi.

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

Statystyka i rachunek prawdopodobieństwa

Statystyka i rachunek prawdopodobieństwa Statystyka i rachuek prawdopodobieństwa Filip A. Wudarski 22 maja 2013 1 Wstęp Defiicja 1. Statystyka matematycza opisuje i aalizuje zjawiska masowe przy użyciu metod rachuku prawdopodobieństwa. Defiicja

Bardziej szczegółowo

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że

Bardziej szczegółowo

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem

d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistyczna Definicja Odwzorowanie X: Ω R nazywamy 1-wymiarowym wektorem d wymiarowy wektor losowy Niech (Ω, S, P) przestrzeń probabilistycza Defiicja Odwzorowaie X: Ω R d azywamy d-wymiarowym wektorem losowym jeśli dla każdego (x 1, x 2,,x d ) є R d zbiór Uwaga {ω є Ω: X(ω)

Bardziej szczegółowo

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombiatoryczych 1. a ile sposobów moża siedmiu stojących a peroie pasażerów umieścić w trzech wagoach? 2. Na szachowicy o wymiarach umieszczamy 8 ierozróżialych wież szachowych tak aby żade

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

0.1 Statystyczne Podstawy Modelu Regresji

0.1 Statystyczne Podstawy Modelu Regresji 0.1 Statystycze Podstawy Modelu Regresji iech daa będzie przestrzeń probabilistycza (Ω, F, P ). Fukcję X : Ω R, określoą a przestrzei zdarzeń elemetarych Ω, o wartościach rzeczywistych, takich że x R {ω

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa)

STATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa) STATYSTYKA MATEMATYCZNA WYKŁAD 0 (powt. wiadomości z r. p-stwa) Literatura M. Cieciura, J. Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 005 R.Leiter, J.Zacharski, "Zarys

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M)

Operatory zwarte Lemat. Jeśli T jest odwzorowaniem całkowym na przestrzeni Hilberta X = L 2 (Ω) z jądrem k L 2 (M M) Operatory zwarte Niech X będzie przestrzeią Baacha. Odwzorowaie liiowe T azywa się zwarte, jeśli obraz kuli jedostkowej T (B) jest zbiorem warukowo zwartym. Przestrzeń wszystkich operatorów zwartych a

Bardziej szczegółowo

Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z rachuku prawdopodobieństwa I* - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Ekonomia matematyczna - 1.1

Ekonomia matematyczna - 1.1 Ekoomia matematycza - 1.1 Elemety teorii kosumeta 1. Pole preferecji Ozaczmy R x x 1,...,x : x j 0 x x, x j1 j. R rozpatrujemy z ormą x j 2. Dla x x 1,...,x,p p 1,...,p Ip x, p x j p j x 1 p 1 x 2 p 2...x

Bardziej szczegółowo

Podstawowe rozkłady zmiennych losowych typu dyskretnego

Podstawowe rozkłady zmiennych losowych typu dyskretnego Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea

Bardziej szczegółowo

Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup

Zadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup Szkice rozwiązań zadań z serii dwuastej oraz części zadań z kartkówki. Zadaie 1. Niech (X, F ) będzie martygałem. Czy X jest domykaly, jeśli ciąg EX l X jest zbieży? X jest zbieży prawie a pewo? X jest

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:

oznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że: Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Fraktale - ciąg g dalszy

Fraktale - ciąg g dalszy Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety

Bardziej szczegółowo

Wykład z Rachunku Prawdopodobieństwa II

Wykład z Rachunku Prawdopodobieństwa II Matematyka stosowaa Wykład z Rachuku Prawdopodobieństwa II Adam Osękowski ados@mimuw.edu.pl http://www.mimuw.edu.pl/~ados Uiwersytet Warszawski, 2011 Streszczeie. Celem iiejszego skryptu jest wprowadzeie

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

1 Dwuwymiarowa zmienna losowa

1 Dwuwymiarowa zmienna losowa 1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3 Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

Modele probabilistyczne zjawisk losowych

Modele probabilistyczne zjawisk losowych Statystyka-matematycza-II Wykład Modele probabilistycze zjawisk losowych Pojęcia podstawowe: Zdarzeia elemetare: ajprostsze zdarzeie mogące być wyróżioe dla daego doświadczeia losowego. Ω - zbiór zdarzeń

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Defiicja ciągu liczbowego. Defiicja 1.1. Ciągiem liczbowym azywamy fukcję a : N R odwzorowującą zbiór liczb aturalych N w zbiór liczb rzeczywistych R i ozaczamy przez { }. Używamy

Bardziej szczegółowo

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.

1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n. Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg

Bardziej szczegółowo

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4

Statystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4 Spis treści Ozaczeia i defiicje 4 Wioskowaie statystycze 4. Statystyki dostatecze................................................. 4.. Rodzia rozkładów wykładiczych......................................

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

16 Przedziały ufności

16 Przedziały ufności 16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEOSTWA

RACHUNEK PRAWDOPODOBIEOSTWA RACHUNEK PRAWDOPODOBIEOSTWA Elemetarym pojęciem w rachuku prawdopodobieostwa jest zdarzeie elemetare tz. możliwy wyik pewego doświadczeia p. rzut moetą: wyrzuceie orła lub reszki arodziy człowieka: urodzeie

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

WYK LAD Z RACHUNKU PRAWDOPODOBIEŃSTWA I

WYK LAD Z RACHUNKU PRAWDOPODOBIEŃSTWA I WYK LAD Z RACHUNKU PRAWDOPODOBIEŃSTWA I ADAM OS EKOWSKI 1. Aksjomatyka Rachuku Prawdopodobieństwa Przypuśćmy, że wykoujemy pewie eksperymet losowy. Powstaje atychmiast pytaie: w jaki sposób opisać go matematyczie?

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.

ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE. ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory

Bardziej szczegółowo

Wyk lad z Rachunku Prawdopodobieństwa WNE, 2008/2009. Wariacje bez powtórzeń. Za lóżmy, iż mamy zbiór n elementowy A. Wówczas

Wyk lad z Rachunku Prawdopodobieństwa WNE, 2008/2009. Wariacje bez powtórzeń. Za lóżmy, iż mamy zbiór n elementowy A. Wówczas Wyk lad z Rachuku Prawdopodobieństwa WNE, 2008/2009. Podstawowe schematy kombiatorycze Wariacje z powtórzeiami. Za lóżmy, iż mamy zbiór elemetowy A. Wówczas liczba k-elemetowych ciagów o wyrazach ze zbioru

Bardziej szczegółowo

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,

będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0, Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi

Bardziej szczegółowo

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów

Matematyka ETId I.Gorgol Twierdzenia o granicach ciagów. Twierdzenia o granicach ciagów Twierdzeia o graicach ciagów Matematyka ETId I.Gorgol Zbieżość ciagu a jego ograiczoość TWIERDZENIE Jeżeli ci ag liczbowy a ) jest zbieży do graicy skończoej, to jest ograiczoy. Zbieżość ciagu a jego ograiczoość

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa aaliza daych doświadczalych Wykład 6.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Własości rozkładu ormalego Cetrale twierdzeie graicze Fukcja charakterystycza

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X

z przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R

Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )

a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, ) PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

8 Weryfikacja hipotez statystycznych

8 Weryfikacja hipotez statystycznych Marek Beśka, Statystyka matematycza, wykład 8 04 8 Weryfikacja hipotez statystyczych 8. Hipotezy statystycze Drugą obok estymacji formą wioskowaia statystyczego jest weryfikacja hipotez statystyczych.

Bardziej szczegółowo