Twierdzenia graniczne:
|
|
- Seweryna Krajewska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Twierdzeia graicze: Tw. ierówośd Markowa Jeżeli P(X > 0) = 1 oraz EX <, to k > 0: P X k 1 k EX. Tw. ierówośd Czebyszewa Jeżeli EX = m i 0 < σ = D X <, to t > 0: P( X m tσ) 1 t. 1. Z partii towaru o wadliwości % wylosowao bez zwracaia 400 elemetów. Oszacuj prawdopodobieostwo, że wśród wylosowaych elemetów liczba wadliwych ie przekracza 5%. X liczba wylosowaych wadliwych elemetów X ma rozkład dwumiaowy z prawdopodobieostwem sukcesu p = 0,0 i = 400 szacujemy P(X 0) = 1 P(X > 0) = 1 P(X 1) z ierówości Markowa P(X 1) ,0 = 8 1 P(X 0) = Zmiee losowe X 1, X, X 3, X 4 są iezależe o tym samym rozkładzie jedostajym a odciku [0,1]. Oszacuj P(X 1 + X + X 3 + X 4 < 3). P(X 1 + X + X 3 + X 4 < 3) = 1 - P(X 1 + X + X 3 + X 4 3) E(X 1 + X + X 3 + X 4 ) = = = 1 3
2 3. Niech X będzie sumą 10 iezależych zmieych losowych o rozkładzie wykładiczym z parametrem =. Oszacuj prawdopodobieostwo P(3 < X < 7). EX = 10 1 = 5, σ = D X = = 5 P(3 < X < 7) = P( X 5 < ) = P( X - 5 < 5 σ) = 1 P( X 5 5 σ) = Z ierówości Czebyszewa oszacowao, że prawdopodobieostwo tego, że liczba N orłów w serii rzutów symetryczą moetą różi się od swojej wartości oczekiwaej o więcej iż 5% tej wartości oczekiwaej jest ie większe iż 1/160. Z ilu co ajmiej rzutów składa się ta seria? EX =, D X = 4 P( X - 1 ) 1 P( X - σ) 1 1 = 16 = = Tw. słabe prawo wielkich liczb Jeżeli X 1, X, X 3, jest ciągiem iezależych zmieych losowych o tym samym rozkładzie, o wartości oczekiwaej m i wariacji σ 0,, to ε > 0: lim P( X 1 + X + + X m < ε) = 1 Wiosek: Jeżeli X 1, X, X 3, jest ciągiem iezależych zmieych losowych o tym samym rozkładzie zero-jedykowym dla P(X i = 1) = p, to ε > 0: lim P( X 1 + X + + X p < ε) = 1
3 Niech X i będzie ciągiem iezależych zmieych losowych o tym samym rozkładzie ormalym N(m, ). Jak duże musi byd, aby w słabym prawie wielkich liczb graicę moża było zastąpid liczbą z błędem ie większym iż 0,001. Błędem w zastąpieiu graicy liczbą P( X 1+X + +X 1 - P X 1+X + +X E( X 1+X,+ +X P X 1+X + +X m < ε ) jest m < ε = P( X 1+X + +X m ε) = σ = σ σ σ σ σ ε 0, ε ) = m, D X 1+X,+ +X m ε Tw. moce prawo wielkich liczb Jeżeli X 1, X, X 3, jest ciągiem iezależych zmieych losowych o tym samym rozkładzie, o wartości oczekiwaej m i wariacji σ 0,, to P( lim X 1 + X + + X = m) = 1 Cetrale twierdzeie graicze: Tw. Lideberga-Levy ego Jeżeli X 1, X, X 3, jest ciągiem iezależych zmieych losowych o tym samym rozkładzie, wartości oczekiwaej m i wariacji σ 0,, to lim P(X 1 + X + + X m < x) = Φ x, σ gdzie Φ x jest dystrybuatą stadaryzowaego rozkładu ormalego N(0,1)
4 Tw. Moivre a-laplace a Jeżeli Y 1, Y, Y 3, jest ciągiem zmieych losowych i Y ma rozkład dwumiaowy z parametrami i p, to lim P(Y p < x) = Φ(x) pq Mówimy, że zmiea Y ma rozkład asymptotyczie ormaly z parametrami p i pq. 1. Niech zmiea χ ma rozkład chi-kwadrat o stopiach swobody Eχ =, D χ = z tw. Lideberga-Levy ego lim P( χ < x) = Φ(x) czyli χ ma rozkład asymptotyczie ormaly z parametrami i Niech X 1, X, X 3, będzie ciągiem iezależych zmieych losowych o różych rozkładach, EX i = m i, D X i = σ i Ozaczmy przez W i 3 = E( X i m i 3 ), W 3 = W W W 3, σ = σ 1 + σ + + σ Tw. Lapuowa Jeżeli X 1, X, X 3, jest ciągiem iezależych zmieych losowych o różych rozkładach oraz lim W = 0, to σ lim P(X 1 + X + + X (m 1 + m + + m ) < x) = Φ x σ Jeżeli liczba zmieych losowych ieograiczeie wzrasta, to przy spełieiu założeia lim rozkład średiej arytmetyczej tych zmieych dąży do rozkładu ormalego W σ = 0
5 Def. Mówimy, że fukcja Z: jest zespoloą zmieą losową Z( ) = X( ) + iy( ), gdzie X,Y są rzeczywistymi zmieymi losowymi oraz i = 1. Def. Fukcją charakterystyczą zmieej losowej X azywamy fukcję : C określoą jako Uwaga: φ t = E costx + ie(sitx) Tw. własości fukcji charakterystyczej 1. jest jedostajie ciągła. (0) = 1 3. t : (t) 1 4. t R: φ t = φ(t) φ t = E e itx = e itx df(x) Tw. Jeżeli zmiee losowe X i Y są iezależe, to fukcja charakterystycza sumy zmieych X i Y rówa jest iloczyowi fukcji charakterystyczych X i Y φ X+Y = φ X φ Y Wiosek: 1. Dla zmieej X typu skokowego P(X = x k ) = p k fukcja charakterystycza φ t = k p k. a R: φ ax t = φ X (at) 3. a R: φ X+a t = e ita φ X (t) e itx k
6 Tw. Istieie k-tego mometu zmieej losowej X jest rówoważe istieiu k-tej pochodej fukcji charakterystyczej, przy czym m k = EX k = φ k (0) i k Fukcja charakterystycza zmieej X: 1. X ma rozkład zero-jedykowy φ t = pe it + q. X ma rozkład dwumiaowy z parametrami i p φ t = (pe it + q) 3. X ma rozkład Poissoa z parametrem φ t = e λ(eit 1) 4. X ma rozkład jedostajy a przedziale *a,b] φ t = eitb e ita b a it 5. X ma rozkład wykładiczy z parametrem φ t = λ λ it 6. X ma rozkład ormaly stadaryzoway N(0,1) φ t = e t 7. X ma rozkład gamma z parametrami i φ t = ( 1 1 iβt )α 1. Oblicz momety rozkładu ormalego stadaryzowaego N(0,1). φ t = e t φ t = ( 1) t =0! φ +1 0 = 0 φ 0 = ( 1)!! m k = 0, k = + 1!!, k =. Niech X 1, X,, X będą iezależymi zmieymi o rozkładach N(m i, σ i ). Wyzacz rozkład
7 zmieej Y = X 1 + X + + X jeżeli X i ma rozkład N(m i, σ i ) to zmiea X i = X i m i ma rozkład N(0,1) φ σ Xi t = e t i czyli φ Xi t = φ σi X i +m i t = e itm iφ Xi σ i t = e itm ie (σ i t) φ Y t = φ X1 t φ X t φ X t = e it(m 1+m + +m ) e (σ 1 +σ + +σ )t zmiea Y ma rozkład ormaly N(m 1 + m + + m, σ 1 + σ + + σ ) 3. Oblicz fukcję charakterystyczą zmieej X o gęstości 0, x x, 1 < x 0 f x = 1 x, 0 < x 1 0, x > 1 φ t = e itx f(x)dx 0 = 1 + x e itx dx + 1 +[ 1 x eitx it + eitx it ] 0 1 (1 x)e itx dx = [ 1 + x eitx 0 it 1 e it + e it (1 cost) = t = t Wiosek: Jeżeli (t) jest fukcją charakterystyczą zmieej X, to 1. p k = P X = x k = 1 e itx kφ t dt dla zmieej typu skokowego. f x = 1 π π π π e itx φ t dt dla zmieej typu ciągłego eitx it ] 0 + 1
ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 8. ZBIEŻNOŚĆ CIĄGU ZMIENNYCH LOSOWYCH. TWIERDZENIA GRANICZNE 1 Zbieżość ciągu zmieych losowych z prawdopodobieństwem 1 (prawie apewo) Ciąg zmieych losowych (X ) jest
Bardziej szczegółowoPodstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Bardziej szczegółowoNiezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne
Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoLista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Bardziej szczegółowoWykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
Bardziej szczegółowoPrawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Bardziej szczegółowoCharakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Bardziej szczegółowoSTATYSTKA I ANALIZA DANYCH LAB II
STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.
Bardziej szczegółowoLista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Bardziej szczegółowoWykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
Bardziej szczegółowoP ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.
Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy
Bardziej szczegółowobędą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Bardziej szczegółowoStatystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
Bardziej szczegółowo1 Twierdzenia o granicznym przejściu pod znakiem całki
1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae
Bardziej szczegółowosą niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X
Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)
Bardziej szczegółowo1 Dwuwymiarowa zmienna losowa
1 Dwuwymiarowa zmiea loowa 1.1 Dwuwymiarowa zmiea loowa kokowa X = x i, Y = y k = p ik przy czym i, k N oraz p ik = 1; i k p i = X = x i = p ik dla i N; p k = Y = y k = p ik dla k N; k i F 1 x = p i dla
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
TATYTYKA MATEMATYCZNA ROZKŁADY PODTAWOWYCH TATYTYK zmiea losowa odpowiedik badaej cechy, (,,..., ) próba losowa (zmiea losowa wymiarowa, i iezależe zmiee losowe o takim samym rozkładzie jak (taką próbę
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 6.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Własości rozkładu ormalego Cetrale twierdzeie graicze Fukcja charakterystycza
Bardziej szczegółowoWYKŁAD 1. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD Zdarzeia losowe i prawdopodobieństwo Zmiea losowa i jej rozkłady Metody statystycze metody opisu metody wioskowaia statystyczego sytetyczy liczbowy opis właściwości zbioru daych ocea charakterystyk
Bardziej szczegółowoTrzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Bardziej szczegółowoKurs Prawdopodobieństwo Wzory
Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uiwersytet Ekoomiczy w Katowicach 2015/16 ROND, Fiase i Rachukowość, rok 2 Rachuek prawdopodobieństwa Rzucamy 10 razy moetą, dla której prawdopodobieństwo wyrzuceia orła w pojedyczym
Bardziej szczegółowo1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,
1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =
Bardziej szczegółowo0.1 ROZKŁADY WYBRANYCH STATYSTYK
0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są
Bardziej szczegółowoLiczebnośd (w tys.) n
STATYSTYKA Statystyka bada prawidłowości w zjawiskach masowych (tz. takich, które mogą występowad ieograiczoą ilośd razy). Przedmiotem badao statyki są zbiory (populacje), których elemetami są wszelkiego
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA. WYKŁAD 0 (powt. wiadomości z r. p-stwa)
STATYSTYKA MATEMATYCZNA WYKŁAD 0 (powt. wiadomości z r. p-stwa) Literatura M. Cieciura, J. Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 005 R.Leiter, J.Zacharski, "Zarys
Bardziej szczegółowoθx θ 1, dla 0 < x < 1, 0, poza tym,
Zadaie 1. Niech X 1,..., X 8 będzie próbą z rozkładu ormalego z wartością oczekiwaą θ i wariacją 1. Niezay parametr θ jest z kolei zmieą losową o rozkładzie ormalym z wartością oczekiwaą 0 i wariacją 1.
Bardziej szczegółowoPRZEDZIAŁY UFNOŚCI. Niech θ - nieznany parametr rozkładu cechy X. Niech α będzie liczbą z przedziału (0, 1).
TATYTYKA MATEMATYCZNA WYKŁAD 3 RZEDZIAŁY UFNOŚCI Niech θ - iezay parametr rozkład cechy. Niech będzie liczbą z przedział 0,. Jeśli istieją statystyki, U i U ; U U ; których rozkład zależy od θ oraz U θ
Bardziej szczegółowoPrzykłady 8.1 : zbieżności ciągów zmiennych losowych
Rachuek rawopoobieństwa MA8 Wyział Matematyki, Matematyka Stosowaa rzykłay 8. Róże rozaje zbieżości ciągów zmieych losowych. rawa wielkich liczb. Twierzeia graicze. rzykłay 8. : zbieżości ciągów zmieych
Bardziej szczegółowo1 Przedziały ufności. ). Obliczamy. gdzie S pochodzi z rozkładu B(n, 1 2. P(2 S n 2) = 1 P(S 2) P(S n 2) = 1 2( 2 n +n2 n +2 n ) = 1 (n 2 +n+2)2 n.
Przedziały ufości W tym rozdziale będziemy zajmować się przede wszystkim zadaiami związaymi z przedziałami ufości Będą as rówież iteresować statystki pozycyje oraz estymatory ajwiększej wiarygodości (Eg
Bardziej szczegółowoStatystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 23 kwietnia Oznaczenia i definicje 3
Spis treści Ozaczeia i defiicje 3 Wioskowaie statystycze 3. Statystyki dostatecze................................................. 3.. Rodzia rozkładów wykładiczych......................................
Bardziej szczegółowoWokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych
Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b
Bardziej szczegółowoEstymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7
Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoFunkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Bardziej szczegółowoZadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Bardziej szczegółowoRozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Bardziej szczegółowoX i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
Bardziej szczegółowoLista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Bardziej szczegółowoEstymatory nieobciążone o minimalnej wariancji
Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)
Bardziej szczegółowoEstymacja przedziałowa:
Estymacja przedziałowa: Zamiast szukad ajlepszego estymatora, tak jak w estymacji puktowej będziemy poszukiwad przedziału, do którego będzie ależał szukay parametr z odpowiedio dużym prawdopodobieostwem.
Bardziej szczegółowoROZKŁADY ZMIENNYCH LOSOWYCH
ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X
Bardziej szczegółowo40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.
Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje
Bardziej szczegółowoWykład z Rachunku Prawdopodobieństwa II
Matematyka stosowaa Wykład z Rachuku Prawdopodobieństwa II Adam Osękowski ados@mimuw.edu.pl http://www.mimuw.edu.pl/~ados Uiwersytet Warszawski, 2011 Streszczeie. Celem iiejszego skryptu jest wprowadzeie
Bardziej szczegółowoPodstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja
Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im
Bardziej szczegółowoLaboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
Bardziej szczegółowoP = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +
Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch
Bardziej szczegółowoZmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,
Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{
Bardziej szczegółowoStatystyka Matematyczna. Skrypt. Spis treści. SKN Matematyki Stosowanej. s k n. m s 11 czerwca Oznaczenia i definicje 4
Spis treści Ozaczeia i defiicje 4 Wioskowaie statystycze 4. Statystyki dostatecze................................................. 4.. Rodzia rozkładów wykładiczych......................................
Bardziej szczegółowo1 Układy równań liniowych
Katarzya Borkowska, Wykłady dla EIT, UTP Układy rówań liiowych Defiicja.. Układem U m rówań liiowych o iewiadomych azywamy układ postaci: U: a x + a 2 x 2 +... + a x =b, a 2 x + a 22 x 2 +... + a 2 x =b
Bardziej szczegółowoNajczęściej spotykane rozkłady dyskretne:
I. Rozkład dwupunktowy: Najczęściej spotykane rozkłady dyskretne: Def. Zmienna X ma rozkład dwupunktowy z prawdopodobieostwem 1 przyjmuje tylko dwie wartości, tzn. P(X = x 1 ) = p i P(X = x 2 ) = 1 p =
Bardziej szczegółowon n X n = σ σ = n n n Ponieważ zmienna losowa standaryzowana ma rozkład normalny N(0, 1), więc
5.3. Zagadieia estymacji 87 Rozważmy teraz dokładiej zagadieie szacowaia wartości oczekiwaej m zmieej losowej X o rozkładzie ormalym N(m, F), w którym odchyleie stadardowe F jest zae. Niech X, X,..., X
Bardziej szczegółowooznaczają łączne wartości szkód odpowiednio dla k-tego kontraktu w t-tym roku. O składnikach naszych zmiennych zakładamy, że:
Zadaie. Niech zmiee losowe: X t,k = μ + α k + β t + ε t,k, k =,2,, K oraz t =,2,, T, ozaczają łącze wartości szkód odpowiedio dla k-tego kotraktu w t-tym roku. O składikach aszych zmieych zakładamy, że:
Bardziej szczegółowoZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Bardziej szczegółowo16 Przedziały ufności
16 Przedziały ufości zapis wyiku pomiaru: sugeruje, że rozkład błędów jest symetryczy; θ ± u(θ) iterpretacja statystycza przedziału [θ u(θ), θ + u(θ)] zależy od rozkładu błędów: P (Θ [θ u(θ), θ + u(θ)])
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 8.04.06 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 05/06 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo
Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło
Bardziej szczegółowoz przedziału 0,1. Rozważmy trzy zmienne losowe:..., gdzie X
Matematyka ubezpieczeń majątkowych.0.0 r. Zadaie. Mamy day ciąg liczb q, q,..., q z przedziału 0,. Rozważmy trzy zmiee losowe: o X X X... X, gdzie X i ma rozkład dwumiaowy o parametrach,q i, i wszystkie
Bardziej szczegółowoZadanie 3. ( ) Udowodnij, że jeśli (X n, F n ) jest martyngałem, to. X i > t) E X n. . t. P(sup
Szkice rozwiązań zadań z serii dwuastej oraz części zadań z kartkówki. Zadaie 1. Niech (X, F ) będzie martygałem. Czy X jest domykaly, jeśli ciąg EX l X jest zbieży? X jest zbieży prawie a pewo? X jest
Bardziej szczegółowoFunkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty
momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.
Bardziej szczegółowoWykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Bardziej szczegółowoStatystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo
Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło
Bardziej szczegółowo3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 7.04.07 dr iż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr leti 06/07 Cetrale twierdzeie graicze - przypomieie Sploty Pobieraie próby, estymatory
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa I Grupę n dzieci ustawiono w sposób losowy w szereg. Oblicz prawdopodobieństwo
Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło
Bardziej szczegółowoPrzestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Bardziej szczegółowoZdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe
Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki
Bardziej szczegółowoEstymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Bardziej szczegółowoMACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Bardziej szczegółowo1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o
1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady
Bardziej szczegółowo3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy
Bardziej szczegółowoRozkłady statystyk z próby Twierdzenia graniczne
Rozkłady statystyk z róby Twierdzeia graicze PRÓBA LOSOWA Próbą losową rostą azyway ciąg -zieych losowych iezależych i osiadających jedakowe rozkłady takie jak rozkład zieej losowej w oulacji geeralej
Bardziej szczegółowoEstymacja: Punktowa (ocena, błędy szacunku) Przedziałowa (przedział ufności)
IV. Estymacja parametrów Estymacja: Puktowa (ocea, błędy szacuku Przedziałowa (przedział ufości Załóżmy, że rozkład zmieej losowej X w populacji geeralej jest opisay dystrybuatą F(x;α, gdzie α jest iezaym
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Bardziej szczegółowoWYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Bardziej szczegółowoModel ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.
Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej. Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The
Bardziej szczegółowoĆwiczenie nr 14. Porównanie doświadczalnego rozkładu liczby zliczeń w zadanym przedziale czasu z rozkładem Poissona
Ćwiczeie r 4 Porówaie doświadczalego rozkładu liczby zliczeń w zadaym przedziale czasu z rozkładem Poissoa Studeta obowiązuje zajomość: Podstawowych zagadień z rachuku prawdopodobieństwa, Zajomość rozkładów
Bardziej szczegółowoPrawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Bardziej szczegółowoZadania z rachunku prawdopodobieństwa I* Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo
Zadaia z rachuku prawdopodobieństwa I* - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło
Bardziej szczegółowo0.1 Statystyczne Podstawy Modelu Regresji
0.1 Statystycze Podstawy Modelu Regresji iech daa będzie przestrzeń probabilistycza (Ω, F, P ). Fukcję X : Ω R, określoą a przestrzei zdarzeń elemetarych Ω, o wartościach rzeczywistych, takich że x R {ω
Bardziej szczegółowoLista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Bardziej szczegółowoKorelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoStatystyka w rozumieniu tego wykładu to zbiór metod służących pozyskiwaniu, prezentacji, analizie danych.
Statystyka w rozumieiu tego wykładu to zbiór metod służących pozyskiwaiu, prezetacji, aalizie daych. Celem geeralym stosowaia tych metod, jest otrzymywaie, a podstawie daych, użyteczych uogólioych iformacji
Bardziej szczegółowo5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Bardziej szczegółowoZMIENNA LOSOWA I JEJ PARAMETRY -powtórzenie
WNIOSKOWANIE STATYSTYCZNE ZMIENNA LOSOWA I JEJ PARAMETRY -powtórzeie,, S P przestrzeń probabilistycza (matematyczy model zjawiska losowego), zbiór wszystkich zdarzeń elemetarych, S zbiór zdarzeń, (podzbiory
Bardziej szczegółowoJEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Bardziej szczegółowoma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa aaliza daych doświadczalych Wykład 7 3.04.08 dr iż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr leti 07/08 Wielowymiarowy rozkład Gaussa - przypomieie Cetrale twierdzeie graicze
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
Bardziej szczegółowoStatystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Bardziej szczegółowoZadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Bardziej szczegółowoZadania z Rachunku Prawdopodobieństwa I - 1
Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło
Bardziej szczegółowo