Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI"

Transkrypt

1 Janus Tpek TENSOR MOMENTU BEZWŁADNOŚC Scecn, maec 994

2 Temat pac: Tenso momentu bewładnośc Cel pac: Oblcene tensoa momentu bewładnośc dla układu składającego sę klku mas punktowch oa jego wkostane do wnacena momentu bewładnośc dla dowolnej os. Wmagana pogamowe: Oblcane watośc własnch wektoów własnch mace. Kolejność cnnośc:. Ustalć współędne pestenne mas mnmum cteech mas punktowch (lcb całkowte w akese do klkunastu). Spoądć schematcn sunek układu tch punktów.. Wnacć współędne śodka mas układu petansfomować do układu śodka mas współędne opatwanch mas punktowch. Oblcć kąt, jake twoą wekto wodące tch mas osam układu śodka mas. 3. Oblcć składowe tensoa momentu bewładnosc (ów.(7)). 4. Oblcć watośc własne wekto własne tego tensoa (ów.(8) (9)). 5. Spoądć sunek pedstawając połoŝene os głównch tensoa na tle mas punktowch. 6. Oblcć długość os elpsod (ów. (6)) będącej geometcnm pedstawenem tensoa. Naskcować tą elpsodę. 7. Oblcć watość momentu bewładnośc wględem dowolnej postej pechodącej pe śodek mas (ów. (3)).

3 Tenso momentu bewładnośc T j Nech L będe wektoem momentu pędu punktu matealnego: L p mv () gde jest wektoem wodącm punktu + j + k () aś p jest jego pędem: p mv (3). W ównanu (3) m onaca masę punktu, a v jego pędkość lnową. JeŜel amast punktu mateanego mam do cnena błą stwną, to L m v ρ v d V (4) V gde ρ jest gęstoścą jednoodnej bł. ZałóŜm, Ŝe bła wkonuje uch obotow wokół pewnej os pędkoścą kątową ϖ. Wadomo, Ŝe wekto L ϖ wąane są e sobą następującm ównanem: L ˆ (5) Ne awse wekto L ϖ leŝą na jednej postej, atem welkość ) ne moŝe bć an skalaem, an teŝ wektoem. Jest ona tensoem dugego ędu (bo łąc dwa wekto) nawana ostała tensoem momentu bewładnośc. Tenso momentu bewładnośc jest tensoem smetcnm, któ moŝna pedstawć w postac mace 3 na 3: ) Ι Równane (5) apsane w postac maceowej ma postać: (6) L L L (7) 3

4 4 Nech bła stwna będe łoŝona n punktów matealnch, kaŝd o mase m, umesconch w pesten na końcach wektoów wodącch : k j + + (8) PonewaŜ wekto pędkośc lnowej v punktu wkonującego uch obotow moŝna pedstawć w postac v (9) atem ównane (4) apsem następująco: ( ) ( ) m L (0) Stosując do powŝsego ównana toŝsamość wektoową ( ) ( ) ( ) b a c c a b c b a () otmam: ( ) [ ] m L () PonewaŜ (3) dlatego ównane () pjme postać: ( ) ( ) ( ) k j k j m kl jl L (4)

5 Poównując waŝena wstępujące p odpowednch wesoach po obu stonach ównana (4) otmam: L m [ ( ) ] m [ ( ) ] L m [ ( )] [ ( ) ] L m [ ( + )] m m (5) [ ( )] Ropsując ównane (7) dostanem: L L L Poównane stonam ównań (5) składowe tensoa momentu bewładnośc: ( ) ( ) m m + ( ) m + ( ) m + ( ) m m m m (6) (6) powala otmać ostatecne waŝene na PowŜse ównana moŝna apsać w węłej postac stosując tw. smbol Koneckea δ kl : δ kl KgdK k l 0KgdKk l Wted wsstke ównana (7) apsą sę tak: kl m kl δ kl ( ) k l (7) W powŝsm ównanu ; ; 3. 5

6 Watośc własne wekto własne tensoa Równane na watośc własne λ tensoa T j ma postać: T T T λ 3 T T λ T 3 T 3 T3 T33 λ 0 (8) Rowąując to ównane tecego stopna otmujem t (w ogólnośc óŝne) watośc własne λ, λ, λ 3. W ppadku tensoa momentu bewładnośc są to główne moment bewładnośc wględem tech wajemne postopadłch os wanch osam głównm. Ose główne cl wekto własne tensoa w oblcm ównana: dla,,3. T λ T T3 T T λ T 3 T3 w T3 w 0 T33 λ w 3 Geometcna ntepetacja tensoa (9) 3 γ β α Nech wekto q two osam układu O 3 kąt α, β γ. Jego składowe są atem q(q cos( α),q cos( β),q cos( γ)).moŝna je smbolcne apsać jako qc k, gde c k jest odpowednm cosnusem keunkowm. ZałóŜm ponadto, Ŝe wekto p powstaje skutkem dałana tensoa Tk na wekto q. Wted p T q c T q c q k k k k Tk ck (0) k 6

7 gde astosowano umowę sumacjną Enstena: jeŝel w waŝenu dan wskaźnk wstępuje dwa a (tutaj k), to naleŝ wkonać po nm sumowane. Pjmjm następującą defncję: JeŜel welkość fcna jest okeślona funkcją p T k q k, to tenso [T k ] ma w obanm keunku q watość ówną składowej p ównoległej do q podelonej pe bewględną watość q: p T q () q [ ] Składowa p jest ówna locnow skalanemu wektoa p oa wektoa jednostkowego w keunku wektoa q a ma on składowe (c, c, c 3 ). Dlatego p c p q c Tk ck Zgodne defncją () otmam: p k () cc c3 q [ T] c Tk c Z powŝsego wou wnka, Ŝe tenso T ma w keunku os (cl dla c, c c 3 0 watość T, w keunku os 3 watość T 33 tp.). Równane () w pełnej postac wgląda następująco: [ T] c + c + 33 c3 + c c + 3 c c3 + 3c3 c c c T T T T T T (3) 3 c Tenso w układe os głównch ma atem jedne 3 składowe: T,T,T 33. Ropatm następne ównane powechn dugego stopna: + T + T33 + T + T3 3 + T3 3 (4) 3 T 7

8 Nech punkt P leŝ na tej powechn, w odległośc OP od pocątku okładu odnesena nech cosnus keunkowe wektoa jednostkowego postej OP wnosą odpowedno c. Zatem c. Podstawając te watośc do ównana (4) dostanem: [ T c T c + T33c3 + T c c + T3c c3 + T3c3 c ] + (5) Uwględnając (3), wó (5) moŝna apsać tak: [ T] cl [ T] cc c 3 (6) cc3 c To ostatne ównane moŝna apsać w badej węłej postac Tk k (7) Nawam je kwadką tensoa T k. JeŜel własność fcna ma stale watość dodatną, jak to ma mejsce np. dla momentu bewładnośc, to kwadkę tensoa T k stanow elpsoda. Pomeń wodąc wpowadon e śodka kwadk do dowolnego punktu na powechn jest ówn odwotnośc pewastka kwadatowego własnośc epeentowanej pe kwadkę meonej w keunku pomena wodącego : (8) [ T] PRZYKŁAD. Współędne punktów (układ OXYZ) oa ch mas: Zakładam, Ŝe badanm układem będe bó cteech mas punktowch o następującch współędnch pestennch podanch w układe OXYZ (pat sunek ) oa o masach m: Punkt X Y Z m P P P P

9 . Wnacene współędnch ( s, s, s ) śodka mas układu: s m X m m Y s m s m Z m Dla układu punktów P...P4 oblcone współędne śodka mas wnosą: s0.777 s s Oblcene współędnch punktów w układe śodka mas (układ O) X-s Y-s Z-s Punkt P P P P Kąt (w stopnach), jake twoą wekto wodące tch punktów osam układu współędnch O wnosą: 9

10 Punkt O O O P 60,9 3,7 03,7 P 33, 7,3 48,4 P3 34,7 98,6 46,0 P4 84,8 58,9 0,4 Oblcone one ostał ównana: n k n k + ( ) n k + cos α k gde jest wektoem wodącm wbanego punktu, a n wesoem (wektoem jednostkowm) odpowednej os układu współędnch. Np. weso os O to wekto (0,, 0). n k 4. Oblcene składowch tensoa momentu bewładnośc j: Oblcena wkonujem w opacu o wo (7). Otmano następujące wnk: PonewaŜ tenso awea element poadagonalne, pjęt układ odnesena O ne jest układem os głównch tensoa momentu bewładnośc. 5. Oblcene watośc własnch wektoów własnch tensoa momentu bewładnośc. Watośc własne oblcm owąując następujące ównane tecego stopna wględem (ównane (8)): Otmuje sę następujące watośc lcbowe dla głównch momentów bewładnośc: T wekto własne w (ose główne), odpowadające poscególnm watoścom własnm oblcm następującch tech ównań (dla,,3) : 0

11 04, Otmano ponŝse watośc lcbowe na składowe wektoów własnch: w w w Punkt P...P4 twoą następujące kąt (w stopnach) osam układu os głównch Ow w w 3 : Punkt Ow Ow Ow 3 P P P P Oblcone ostał one ównana w k w k + w k + w k cos ( δk) + + w k + w k + w k + + w k + w k + w k

12 6. Kwadka tensoa momentu bewładnośc: Ose elpsod, będącej geometcnm pedstawenem tensoa momentu bewładnośc mają następujące długośc (ównane (8)): e 0,0734 e 0, e3 3 0, Oblcene momentu bewładnośc wględem dowolne wbanej os. Ropatm dowolną postą, któej wekto jednostkow w układe śodka mas O ma następujące cosnus keunkowe:(0,45; 0,30; -0,843). (Suma kwadatów mus bć ówna jeden). Ta posta two następujące kąt osam głównm (w stopnach): α70.6 β39,7 γ56,9 Moment bewładnośc wględem tej os wnos (ównane (3)): ( 0,45) 340,4 + ( 0,30) 8,3 + ( 0,843) 59,544 79, 86

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,

Bardziej szczegółowo

cz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Bła stwna c. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-, pok. skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/ 8-- Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka Śodek as/ śodek cężkośc

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa

Bardziej szczegółowo

Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.

Obroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe. Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej ka dla Infoatk Stosowanej Jacek Golak Seest ow 8/9 Wkład n 4 Na popedn wkłade oważlś wąk ęd pędkoścą pspesene w dwóch układach odnesena Wó na tansfoację pędkośc! v v' v ' t ana pędkośc na skutek uchu obotowego

Bardziej szczegółowo

= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:

= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać: Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego.  Dr hab. inż. Władysław Artur Woźniak D hab. ż. Władysław Atu Woźak Wykład FZYKA 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak stytut Fyk Poltechk Wocławskej http://www.f.pw.woc.pl/~woak/fyka.html D hab. ż. Władysław Atu Woźak ŚRODEK

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

elektrostatyka ver

elektrostatyka ver elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna

Bardziej szczegółowo

ELEMENTY MECHANIKI ANALITYCZNEJ

ELEMENTY MECHANIKI ANALITYCZNEJ ELEMENTY MECHANIKI ANALITYCZNEJ Roatuem układ o welu tonach wobod, n. układ łożon unktów matealnch. Na układ mogą bć nałożone wę. P unkt matealn o mae m Układ wobodn kładaąc ę unktów matealnch Wółędne

Bardziej szczegółowo

Rysunek 9-13 jest to pokazane na rysunku 9-14.W rezultacie, jeŝeli obroty odbywają się w r

Rysunek 9-13 jest to pokazane na rysunku 9-14.W rezultacie, jeŝeli obroty odbywają się w r Wykład z zyk, Pot Posmykewcz 9-5 96 Własnośc wektoowe obotów. Aby zaznaczyć keunek obotów względem ustalonej os moŝna wpowadzć plus lub mnus pzed oznaczenem pędkośc kątowej, analogczne jak to mało mejsce

Bardziej szczegółowo

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak D hab. ż. Władysław Atu Woźak Wykład FIZYKA I 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak Kateda Optyk Fotok Wydał Podstawowych Poblemów Techk Poltechka Wocławska http://www.f.pw.woc.pl/~woak/fyka1.html

Bardziej szczegółowo

Model pojazdu zastosowany w programie V-SIM do symulacji ruchu i zderzeń pojazdów samochodowych

Model pojazdu zastosowany w programie V-SIM do symulacji ruchu i zderzeń pojazdów samochodowych odel pojadu astosowan w pogae V-S do sulacj uchu deeń pojadów saochodowch Daus BUŁKA 1, Pot ŚWDER 2 STRESZCZENE W atkule pblżono odel pojadu o 1 stopnach swobod, astosowan w now pogae V-S penacon do wspoagana

Bardziej szczegółowo

Pręty silnie zakrzywione 1

Pręty silnie zakrzywione 1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

Układy punktów materialnych i zasada zachowania pędu.

Układy punktów materialnych i zasada zachowania pędu. Wykład z fzyk. Pot Posmykewcz 68 W Y K Ł A D VII Układy punktów matealnych zasada zachowana pędu. Do tej poy taktowaly cała take jak samochód, aketę, czy człoweka jako punkty matealne (cząstk) stosowaly

Bardziej szczegółowo

Fizyka 7. Janusz Andrzejewski

Fizyka 7. Janusz Andrzejewski Fzyka 7 Janusz Andzejewsk Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego

Bardziej szczegółowo

Novosibirsk, Russia, September 2002

Novosibirsk, Russia, September 2002 Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

DYNAMIKA BRYŁY SZTYWNEJ. POLE GRAWITACYJNE. wewnętrznych i zewnętrznych (

DYNAMIKA BRYŁY SZTYWNEJ. POLE GRAWITACYJNE. wewnętrznych i zewnętrznych ( DYNAMIKA BYŁY STYWNJ POL GAWITACYJN Defncja były stywnej Δ Była stywna to bó neskońcene ałych unktów atealnych Odlełość ędy dwoa dowolny d j unkta d j ne ulea ane od wływe dałana sł Δ j wewnętnych ewnętnych

Bardziej szczegółowo

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta. Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania

Bardziej szczegółowo

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1 Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,

Bardziej szczegółowo

5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego

5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego 5. egulacja czętotlwoścowa pędkośc obotowej lnka ndukcyjnego klatkowego 5.1 Zaada egulacj czętotlwoścowej - waunk optymalzacj tatycznej; 5. egulacja kalana pędkośc obotowej ( U/f); 5.3 egulacja wektoowa

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

r śm równa się wypadkowej sile działającej na

r śm równa się wypadkowej sile działającej na Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1

Bardziej szczegółowo

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Czarnodziurowy Wszechświat a ziemska grawitacja

Czarnodziurowy Wszechświat a ziemska grawitacja biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono

Bardziej szczegółowo

=I π xy. +I π xz. +I π yz. + I π yz

=I π xy. +I π xz. +I π yz. + I π yz GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I

9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I 9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 9. Spawdzene dugej zasady dynamk uchu obotowego Wpowadzene Pzez byłę sztywną ozumemy cało, któe pod wpływem dzałana sł ne zmena swego kształtu,

Bardziej szczegółowo

Algebra WYKŁAD 2 ALGEBRA 1

Algebra WYKŁAD 2 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną

Bardziej szczegółowo

Zasady dynamiki ruchu obrotowego

Zasady dynamiki ruchu obrotowego DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika

Bardziej szczegółowo

ZASADA ZACHOWANIA PĘDU

ZASADA ZACHOWANIA PĘDU ZASADA ZACHOWANIA PĘDU; DYNAMIKA RUCHU OBROTOWEGO PRZYPOMNIENIE: Ale dv ZASADA ZACHOWANIA PĘDU dv d a ( V) Jeśl na cało dzałają sły, to cało a pzyśpeszene popocjonalne do całkowtej dzałającej sły: p V

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa 3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne

Bardziej szczegółowo

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej

r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy

Bardziej szczegółowo

Ruch dwu i trójwymiarowy

Ruch dwu i trójwymiarowy Wkład z fizki. Piot Posmkiewicz 1 W Y K Ł A D Ruch dwu i tójwmiaow 3-1 Wekto pzemieszczenia. JeŜeli uch odbwa się w dwu lub tzech wmiaach, to pzemieszczenie ma okeśloną zaówno watość, jak i kieunek w pzestzeni.

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce

Bardziej szczegółowo

Dynamika bryły sztywnej

Dynamika bryły sztywnej W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2 POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment

Bardziej szczegółowo

Guanajuato, Mexico, August 2015

Guanajuato, Mexico, August 2015 Guanajuao Meico Augus 15 W-3 Jaosewic 1 slajdów Dnamika punku maeialnego Dnamika Układ inecjaln Zasad dnamiki: piewsa asada dnamiki duga asada dnamiki pęd ciała popęd sił ecia asada dnamiki pawo akcji

Bardziej szczegółowo

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Naprężenia w ośrodku gruntowym

Naprężenia w ośrodku gruntowym Napężena w ośodku guntowym Napężena geostatycne(pewotne) Wpływ wody guntowej na napężena pewotne Napężena wywołane słą skuponą Napężena pocodące od obcążena ównomene ołożonego Napężena pod fundamentem

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Teoria Pola Elektromagnetycznego

Teoria Pola Elektromagnetycznego Teoia Pola Elektomagnetcnego Wkład 1 Pojęcia anali wektoowej 5.0.006 Stefan Filipowic Wstęp Teścią niniejsego wkładu jest makoskopowa teoia pola elektomagnetcnego. Podstaw tej teoii ostał sfomułowane i

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

= = = A z powyższego: K

= = = A z powyższego: K Janusz B. ępka Ruch absolutny względny X.7. System helocentyczny Janusza B. ępk. Zauważmy, że według teo geocentycznej oaz helocentycznej, odpowedno Zema lub Słońce są absolutne neuchome w osmose. Z waunku

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

J. Szantyr Wykład 11 Równanie Naviera-Stokesa

J. Szantyr Wykład 11 Równanie Naviera-Stokesa J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.

Bardziej szczegółowo

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow

Bardziej szczegółowo

ELEMENTY RACHUNKU WEKTOROWEGO

ELEMENTY RACHUNKU WEKTOROWEGO Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Dynamika układu punktów materialnych

Dynamika układu punktów materialnych Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł

Bardziej szczegółowo

MECHANIKA. Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika studia stacjonarne inżynierskie. Semestr II.

MECHANIKA. Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika studia stacjonarne inżynierskie. Semestr II. ublkacja opacowaa podcas ealacj pojektu la Rowoju oltechk ęstochowskej współfasowaego pe Uę Euopejską w amach Euopejskego Fudusu Społecego. Jacek blsk MEHNIK Mateał pomocce do wkładu edmot podstawow w

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Naa -Japonia W-3 (Jaosewic 1 slajdów Dynamika punku maeialnego Dynamika Układ inecjalny Zasady dynamiki: piewsa asada dynamiki duga asada dynamiki; pęd ciała popęd siły ecia asada dynamiki (pawo akcji

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Pediot: Fika RUCH OBROTOWY- MECHANKA BRYŁY SZTYWNEJ Wkład 7 7/8, ia Pediot: Fika MOMENT PĘDU ENERGA KNETYCZNA W RUCHU PUNKTU MATERANEGO PO OKRĘGU Defiicja oetu pędu =v= ω p =ω = p ω Moet bewładości Jedostką

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo