Pręty silnie zakrzywione 1
|
|
- Czesław Baran
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek. ZŁOŻEI, - osie główne centalne pekoju popecnego > 6 oś leżąca w płascźnie osi pęta jest osią smetii pekoju obciążenie leż w płascnac ównoległc do płascn osi pęta i jest smetcne wg. osi jednmi nieeowmi napężeniami są i τ obowiąuje ipotea Benouliego (ipotea płaskic pekojów) Rs. Q. PRĘŻEIE ORLE asada supepocji.. apężenia od sił osiowej odkstałcenie polega na mianie kąta wiecołkowego o, nie mienia się kwina osi pęta B B B ds ( ) () B' ds' ( )( ) () Rs. O BB' ds' ds ds ( ) (4) ε ds const. ( ) (5) ds ( 0, 0) ε E E ε C (6) twiedenia o ównoważności układu sił ewnętnc i wewnętnc d (7) (8)
2 Pęt silnie akwione.. apężenia od momentu ginającego odkstałcenie polega na mianie kwin pęta (obót pekoju wokół osi obojętnej) - sunek Onacenia : - pomień kwin osi obojętnej o - położenie osi obojętnej wg. osi ciężkości - odległość dowolnego włókna B od wastw obojętnej - pomień kwin osi obojętnej - współędna dowolnego włókna B (licona od osi ciężkości) o Rs. B B ds ( ') (9) BB' ds ' (0) ds ϕ ε d ' ds ' () ϕ Eε E d ' ' () E d ϕ const K K ' ' () K K (a) twiedenia o ównoważności układu sił ewn. i wewn. apisanego w osiac głównc centalnc d K ' d 0 (4)) ' d K d (5) lub też po wkostaniu osi obojętnej Pekstałćm ównanie (5) B oś ciężkości wastwa obojętna O ' d K ' ' d K d K d K d K d 0 K d K d K ( ) ( ) d 0 K d J * def O d K J * K J * (6) Pekstałćm także ównanie (5a). W wniku podielenia wielomianów wstępującc w funkcji podcałkowej otmujem ' ' ' (7) ' ' (5a)
3 Pęt silnie akwione Wstawiając (7) do (5a) otmujem K ' d K ' d K S K o ' ' ' S 0 onaca moment statcn pekoju wględem osi obojętnej ( 0, gdż oś obojętna nie pokwa się osią ciężkości) i wnosi : So o Ostatnia całka wstępująca w (8) wnosi eo - wnika to wpost waunku ównoważności (4). Stad ostatecnie mam następujące ównanie K o K o ( ) ożem tea wnacć e wou (a) napężenia wwołane diałaniem momentu ginającego. ( ) Pomnóżm licnik i mianownik pe, a następnie dodajm i odejmijm od licnika ilocn. Otmujem wówcas: [ ( ) ( ) ] ( ) ( ) ( ) [( ) ( ) ] ( ) ( ) ( ) (0) Pównując watość stałej K ównania (6) do tej ównania (9) otmujem ( ) ( ) () Po wstawieniu () do (0) mam ().. Całkowite napężenia nomalne Całkowite napężenie nomalne będące sumą napężenia wwołanego siłą osiową i momentem ginającm otmujem pe wsumowanie (8) i (). Ostatecnie otmujem: ( ) () () ( ) () ( ) ( ) (8) (9) def ( ) ( ) d (4) Znaki I i III cłonu ównania () ustala się jak w klascnm mimośodowm ociąganiu pęta postego. P ustalaniu naku cłonu II można posługiwać się egułką mówiącą, że jeżeli moment powoduje wost kwin pęta to nak jest, jeżeli natomiast moment postuje pęt to nak jest -. Z ównania () widać, że okład napężeń - sunek 4 - nomalnc jest ipebolicn, mimo że kostaliśm ównań liniowej teoii spężstości. Jest to spowodowane kwoliniowm kstałtem pęta. C Rs. 4
4 Pęt silnie akwione 4.4. oment bewładności J * Całka J * - ównanie (4) - może bć pedstawiona w postaci amkniętej tlko dla postc kstałtów jak np. postokąt i tape. We wsstkic innc ppadkac należ skostać owinięcia funkcji podcałkowej w seeg potęgow i całkować wa po waie. d... d ( ) d d 4 d 4 d... (5).5. Pekój postokątn Całka J * dla pekoju postokątnego wnosi: b ln wówcas b b ln ln ψ ψ ln (6) b (7) ψ nalia napężeń w pęcie o pekoju postokątnm / 4 6 J * / J b J Widać, że dla stosunku ( / ) 6 moment J * jest paktcnie ówn klascnemu momentowi bewładności dla postokąta J. apężenie nomalne ma wówcas postać (8) J Zakładając, że, co onaca że pęt akwion staje się pętem postm otmujem następujące waunki: 0 apężenie nomalne okeślone jest tea ależnością: (9) J Otmaliśm atem wó jak w klascnm adaniu pęta postego mimośodowo ociąganego. W paktce już p stosunku ( / ) 6 pęt akwione lic się jak pęt poste. Jako dowód potaktujm osacowanie błędu, jaki popełnia się p takim sposobie potaktowania pęta akwionego.
5 Pęt silnie akwione 5 pęt post ma 6 J b pęt akwion min 6 J 6 ma. 6 b b min. WIOSEK : astosowanie teoii pęta postego daje osacowanie napężeń nadmiaem (a więc bepiecne) ok. 4.9% dla napężenia maksmalnego i ok. 6.% dla napężenia minimalnego. 679
TEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
4.2.1. Środek ciężkości bryły jednorodnej
4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.
Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko
Funkcje analitycne Wykład 3. Zastosowanie achunku esiduów do owiąywania poblemów analiy ecywistej Paweł Mlecko Funkcje analitycne ok akademicki 8/9 Plan wykładu W casie wykładu omawiać będiemy astosowanie
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA
ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania
KINEMATYKA. Pojęcia podstawowe
KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu
2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])
P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
Guanajuato, Mexico, August 2015
Guanajuao Meico Augus 15 W-3 Jaosewic 1 slajdów Dnamika punku maeialnego Dnamika Układ inecjaln Zasad dnamiki: piewsa asada dnamiki duga asada dnamiki pęd ciała popęd sił ecia asada dnamiki pawo akcji
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki
Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie
=I π xy. +I π xz. +I π yz. + I π yz
GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π
napór cieczy - wypadkowy ( hydrostatyczny )
5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka
MECHANIKA III (Mechanika analityczna)
MECHNIK III (Mechanika analicna) Semes: I, ok akad. 2013/2014 Licba godin: - wkład 15 god., ćwicenia 15 god. *) egamin Wkładając: pof. d hab. inż. Edmund Wibod Kaeda Mechaniki i Mechaoniki p. 103 (sekeaia
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie
dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.
Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła
P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
,..., u x n. , 2 u x 2 1
. Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać
EPR. W -1/2 =-1/2 gµ B B
Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)
Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
Belki złożone i zespolone
Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
1) Cechy geometryczne: bez współpracy przekroju belki (rys. 3.9) i szyny Pole przekroju:
.. Pład licbo Ocenić nośność i stność beli podsunicoej jednopęsłoej o peoju popecnm monosmetcnm spaanm blach: pas gón 00 x 0 pas doln 00 x 0 śodni 0 x 5 sna 50 x 0 połącona pasem gónm ołącnie. Długość
Momenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
Pola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
2.1. ZGINANIE POPRZECZNE
.1. ZGINNIE POPRZECZNE.1.1. Wprowadenie Zginanie poprecne (ginanie e ścinaniem) wstępuje wted, gd ociążenie ewnętrne pręta redukuje się do momentu ginającego M i sił poprecnej. W prekroju takim wstępują
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
EGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii
J. Szantyr Wykład 11 Równanie Naviera-Stokesa
J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8
Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji
Rozciąganie i ściskanie prętów projektowanie 3
Rozciąganie i ściskanie pętó pojektoanie 3 Sposób oziązyania pętó ozciąganych/ściskanych został omóiony ozziale. Zaania pojektoe spoazają się o okeślenia ymiaó pzekoju popzecznego pęta na postaie aunku
Belki zespolone 1. z E 1, A 1
Belki espolone. DEFINIC Belki espolone to belki, którch prekrój poprecn składa się co najmniej dwóch materiałów o różnch własnościach ficnch (różne moduł Younga i współcnniki Poissona), pr cm apewnione
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
MECHANIKA III (Mechanika analityczna)
MECHNIK III (Mechanika analicna) Semes: I, ok akad. 2018/2019 Licba godin: - wkład 15 god., ćwicenia 15 god. *) egamin Wkładając: pof. d hab. inż. Edmund Wibod Kaeda Mechaniki i Mechaoniki p. 101 (sekeaia
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY
Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Coba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Dynamika punktu materialnego
Naa -Japonia W-3 (Jaosewic 1 slajdów Dynamika punku maeialnego Dynamika Układ inecjalny Zasady dynamiki: piewsa asada dynamiki duga asada dynamiki; pęd ciała popęd siły ecia asada dynamiki (pawo akcji
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
Czarnodziurowy Wszechświat a ziemska grawitacja
biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono
1 Całki funkcji wymiernych
Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
GRUPY SYMETRII Symetria kryształu
GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-2
INTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCEOWEJ, MATERIAŁOWEJ I FIZYKI TOOWANEJ POLITECHNIKA CZĘTOCHOWKA LABORATORIUM Z PRZEDMIOTU METODY REZONANOWE ĆWICZENIE NR MR- EPR JONÓW Ni W FLUOROKRZEMIANIE NIKLU I.
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Postać Jordana macierzy
Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja
J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH
Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła
SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność.
SCENAIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w tygonometii Cel: Uczeń twozy łańcuch agumentów i uzasadnia jego popawność Czas: godzina lekcyjna Cele zajęć: Uczeń po zajęciach: wykozystuje definicje
SKRĘCANIE WAŁÓW OKRĄGŁYCH
KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami
Podstawy Konstrukcji Maszyn
Podsta Konstrukcji Masn kład Podsta oliceń elementó masn Dr inŝ. acek Carnigoski OciąŜenia elementu OciąŜeniem elementu (cęści lu całej masn) są oddiałania innc elementó, środoiska ora ociąŝeń enętrnc
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.
WYTRZYMAŁOŚĆ ZŁOŻONA
TRAŁOŚĆ ŁOŻONA rpadki wtrmałości łożonej praktce inżnierskiej najcęściej spotka się łożone prpadki ociążeń konstrukcji. Do prawidłowego rowiąwania tc agadnień koniecna jest najomość wceśniej omówionc prostc
POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
REDUKCJA PŁASKIEGO UKŁADU SIŁ
olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
9. Mimośrodowe działanie siły
9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze
Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Układy współrzędnych
Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych
Adam Bodnar: Wytrzymałość Materiałów. Ukośne zginanie 13. UKOŚNE ZGINANIE
. UKOŚNE GINNIE.. Naprężenia i odkstałcenia Ukośne ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego pręta redukuje się do momentu ginającego, którego
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle