SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego
|
|
- Daniel Chmiel
- 7 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane, pełniające waunek: Da + Db + Dc = 0 można pzeawić jako zuty pewnego wektoa (D), położonego na płazczyźnie, kieowane na tzy oie według natępujących zaad: oie (a, b, c) ą ozmiezczone, twoząc między obą kąt 20 0 (2/3*π) jako kieunek dodatni oi pzyjmuje ię kieunek tzałki od punktu wpólnego 0 uma zutów wektoa na oie a, b, c jet ówna 0. Zależności, wyażające opiywane wielkości, jako kładowe wektoa D ą natępujące: gdzie: D moduł wektoa D; φ kąt między wektoem D i oią a D a = D co ; D b = D co 2 π 3 ; D c = D co 4 π 3 Wekto D można opiać w óżnych układach wpółzędnych: układ katezjańki D = D α j D β = D co +j D in układ biegunowy: D = D. e jφ pzy wykozytaniu kładowych D a, D b, D c : D = 2 3 D a a D b a 2 D c gdzie a, a 2 opeatoy obotu dane zależnościami: a = e j 2 π 3 = 2 j 3 2 a 2 = e j 4 π 3 = 2 j 3 2
2 Mając dany wekto D można obliczyć watości chwilowe : D a = Re [D D b = Re [D. a - D c = Re [D. a -2 Tanfomacje wektoa pzetzennego Twozenie opiu i teowania ilnika indukcyjnego wymaga dokonywania tanfomacji miedzy óżnymi układami wpółzędnych. Są to tanfomacje między układem tójfazowym i katezjańkim, oaz między układem nieuchomym i wiującym. Równania, opiujące tanfomacje między układem tójfazowym i katezjańkim ą natępujące: [ D α D = β [ 0 0 [ D a D b D c lub po wykozytaniu zależności Da + Db + Dc = 0 : tanfomacja odwotna: [ D [ α D = β [ Da D b D c = [ [ D a D b [ D α D β Tanfomacja miedzy układem nieuchomym i wiującym z pędkością ω k = dϑ k natępująco: obliczana jet Oznaczając wekto w nieuchomym układzie jako D, a w uchomym jako D k : D = D e j D k = D e j ϑ k otzymujemy zależności miedzy kładowymi potokątnymi w obu układach: [ D k k D 2 = [ co ϑ k in ϑ k in ϑ k co ϑ k [ D α D β [ D α D β = [ co ϑ k in ϑ k k k D 2 in ϑ k co ϑ k [ D
3 Ilutacja zaady kontukcji wektoa pzetzennego Ilutacja zaady tanfomacji miedzy nieuchomym i uchomym układem wpółzędnych
4 Równania ilnika indukcyjnego klatkowego w potaci wektoowej. Równania, wektoowe obwodów ilnika, uzykane po zatoowaniu opianej koncepcji wektoa pzetzennego ą natępujące: U = i R d Ψ U = i R d Ψ dla tojana dla winika gdzie: U, U wektoy pzetzenne napięć tojana i winika ψ, ψ wektoy pzetzenne tumieni kojazonych tojana i winika i, i wektoy pzetzenne pądów tojana i winika Podane ównania podane ą dla układów wpółzędnych, związanych odpowiednio ze tojanem i winikiem. Powyżze ównania podane ą dla układów wpółzędnych, związanych odpowiednio ze tojanem i winikiem. Po uzupełnieniu o ównania tumieni kojazonych oaz momentu ilnika oaz po dokonaniu tanfomacji wzytkich ównań do układu wpółzędnych, związanego ze tojanem, otzymujemy komplet ównań ilnika: U U = i R d Ψ = i R d Ψ -j p ω m Ψ gdzie: J moment bezwładności M op moment opoowy ω m pędkość kątowa, mechaniczna ilnika p liczba pa biegunów Ψ Ψ = i L +i L m = i L m +i L p 3 2 L m Im {Ψ L i } M op = J dω m L = L σ + L m ; L = L σ + L m L σ, L σ indukcyjności ozpozenia tojana i winika L m indukcyjność od pola głównego, wywołanego pądem jednego uzwojenia i od pól, wywołanych działaniem dwóch, ąiednich uzwojeń W mazynie tójfazowej L m = 3/2. L m, gdzie L m to indukcyjność główna jednej fazy wziętej z oobna. Dla pzypadku ilnika indukcyjnego klatkowego wekto U jet wektoem zeowym.
5 Skalany zapi ównań wektoowych ilnika Aby można było kontuować model ymulacyjny pzy pomocy pakietu Matlab / Simulink należy ównania ilnika pzeawić w potaci kalanej. Pzy kontuowaniu tych ównań można wybać układ wpółzędnych, w któych mają być wyażone. W ćwiczeniu SK-8 należy kontuować model ymulacyjny ilnika w nieuchomym układzie wpółzędnych, związanym ze tojanem. Komplet kalanych ównań w nieuchomym układzie wpółzędnych, gdzie zmiennymi tanu ą: kładowe wektoa pądu tojana, kładowe wektoa tumienia winika oaz pędkość ilnika jet natępujący: di α di β dψ α dψ β = K U α K i α +K 2 Ψ α +K 3 m Ψ β = K U β K i β +K 3 m Ψ α +K 2 Ψ β = R L m i L α R Ψ L α p ω m Ψ β = R L m i L β R Ψ L β p ω m Ψ α p 3 2 L m Ψ L α i β Ψ β i α M op = J ω m gdzie: K= L w ; K = R L 2 2 +R L m L w ; K 2 = L m w R ; K L 3 =p L m w ; w=l 2 L L m
6 Pogamy ćwiczeń Ćwiczenie SK-7 Skontuowanie modułów, dokonujących tanfomacji miedzy układem tójfazowym i katezjańkim, zgodnie z podanymi zależnościami Skontuowanie modułów, dokonujących tanfomacji miedzy uchomym i nieuchomym układem wpółzędnych, zgodnie z podanymi zależnościami Wykonanie ymulacji układu, dokonującego tanfomacji pzebiegów inuoidalnych, twozących uklad o kolejności zgodnej. Wykonanie ymulacji układu, dokonującego tanfomacji pzebiegów potokątnych, zgodnie z podanym yunkiem: Wykonanie ymulacji ymetycznego układu tójfazowego RL z wykozytaniem metody wektoów pzetzennych dla zailania inuoidalnego oaz potokątnego Ćwiczenie SK-8 Skontuowanie wektoowego modelu ilnika indukcyjnego klatkowego, zgodnie z ównaniami, podanymi we wpowadzeniu teoetyczym. Paamety ilnika zotaną podane pzez powadzącego. Wykonanie ymulacji ilnika, zailanego inuoidalnym i potokątnym napięciem.
5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego
5. egulacja czętotlwoścowa pędkośc obotowej lnka ndukcyjnego klatkowego 5.1 Zaada egulacj czętotlwoścowej - waunk optymalzacj tatycznej; 5. egulacja kalana pędkośc obotowej ( U/f); 5.3 egulacja wektoowa
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
MAGISTERSKA PRACA DYPLOMOWA
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH MAGISTERSKA PRACA DYPLOMOWA Układy teowania pędkością kątową ilników aynchonicznych w zeokim zakeie egulacji
Sterowanie prędkością silnika krokowego z zastosowaniem mikrokontrolera ATmega8
mg inż. ŁUKASZ BĄCZEK d hab. inż. ZYGFRYD GŁOWACZ pof. ndzw. w AGH Akademia Góniczo-Hutnicza Wydział Elektotechniki, Automatyki, Infomatyki i Elektoniki Kateda Mazyn Elektycznych Steowanie pędkością ilnika
PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INDUKCYJNYCH
LV SESJA STUENCKICH KÓŁ NAUKOWYCH PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INUKCYJNYCH Wykonali: Michał Góki, V ok Elektotechnika Maciej Boba, V ok Elektotechnika Oiekun naukowy efeatu: d hab. inż.
1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości
Daniel WACHOWIAK Zbigniew KRZEMIŃSKI Politechnika Gdańska Wydział Elektotechniki i Automatyki Kateda Automatyki Napędu Elektycznego doi:1015199/48017091 Wpływ błędów paametów modelu maszyny indukcyjnej
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 2 Działania na wektoach w układzie współzędnych. ZADANIE DOMOWE www.etapez.pl Stona 1 Część 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Któe
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Streszczenie rozprawy doktorskiej
Stezczenie ozpawy doktokiej tytuł: Analiza ważliwości aynchonicznych napędów takcyjnych teowanych wektoowo na zmiany paametów auto: mg inż. Rafał Nowak pomoto: d hab. inż. Andzej Dębowki, pof. PŁ Łódź
KINEMATYKA. Kinematyka jest częścią mechaniki opisującą ruch obiektów bez wchodzenia w
KINEMATYKA Kinematka jet częścią mechaniki opiującą uch iektów bez wchodzenia w pzczn wtępowania uchu Ruch jet względn i zawze jet opiwan w okeślonm układzie wpółzędnch nazwanm układem odnieienia Układ
Laboratorium. Sterowanie napędami elektrycznymi zagadnienia wybrane
POLITECHNIKA WROCŁAWSKA INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH ZAKŁAD NAPĘDU ELEKTRYCZNEGO, MECHATRONIKI I AUTOMATYKI PRZEMYSŁOWEJ Laboratorium Sterowanie napędami elektrycznymi zagadnienia
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych
POLITECHNIKA GDAŃSKA Wydział Elektotechniki i Automatyki Kateda Enegoelektoniki i Mazyn Elektycznych S Y S T E M Y E L E K T R O M E C H A N I C Z N E PROJEKT ĆWICZENIE (SI) BADANIE DYNAMIKI SILNIKA INDUKCYJNEGO
Stany nieustalone maszyn elektrycznych Maria Dems MODELOWANIE MASZYN ELEKTRYCZNYCH
ODEOWANIE ASZYN EEKRYCZNYCH oelem matematycznym mazyny elektycznej nazywamy zetaw ównań opiujących zjawika elektomagnetyczne, elektomechaniczne, temiczne i inne, wytępujące w mazynie elektycznej W celu
Zastosowanie teorii pierścieni w praktyce
Upozczenie wyażeń 2x+(y x) = x+y Spotkania z Matematyka Zatoowanie teoii pieścieni w paktyce Alekande Deniiuk denijuk@matman.uwm.edu.pl Uniweytet Wamińko-Mazuki w Olztynie Wydział Matematyki i Infomatyki
BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO
LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
STEROWANIE AUTONOMICZNYM GENERATOREM INDUKCYJNYM ZE WZBUDZENIEM PRZEKSZTAŁTNIKOWYM
Zezyty Poblemowe Mazyny Elektyczne N 88/2010 123 BłaŜej Jakubowki, Kzyztof Pieńkowki Politechnika Wocławka STEROWANIE AUTONOMICZNYM GENERATOREM INDUKCYJNYM ZE WZBUDZENIEM PRZEKSZTAŁTNIKOWYM CONTROL OF
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
ANALIZA WRAŻLIWOŚCI BEZCZUJNIKOWEGO UKŁADU STEROWANIA WEKTOROWEGO SILNIKIEM INDUKCYJNYM Z WYBRANYMI ESTYMATORAMI STRUMIENIA I PRĘDKOŚCI WIRNIKA
Pace Naukowe Intytutu Mazyn, Napędów i Pomiaów Elektycznych N 56 Politechniki Wocławkiej N 56 Studia i Mateiały N 24 2004 TERESA ORŁOWSKA-KOWALSKA *, Jacek LIS * Silnik indukcyjny, teowanie wektoowe, napęd
Obserwator prędkości kątowej wirnika maszyny indukcyjnej klatkowej oparty na metodzie backstepping ze ślizgowymi funkcjami przełączającymi
Macin MORAWIEC Akadiuz LEWICKI Zbigniew KRZEMIŃSKI Politechnika Gdańka Kateda Automatyki Napędu Elektycznego doi:599/482856 Obewato pędkości kątowej winika mazyny indukcyjnej klatkowej opaty na metodzie
Zagadnienie dwóch ciał oddziałujących siłą centralną Omówienie ruchu ciał oddziałujących siłą o wartości odwrotnie proporcjonalnej do kwadratu ich
Zagadnienie dwóch ciał oddziałujących iłą centalną Oówienie uchu ciał oddziałujących iłą o watości odwotnie popocjonalnej do kwadatu ich odległości F F Siła centalna F F F F Dla oddziaływania gawitacyjnego
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
Atom wodoru w mechanice kwantowej
Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego
Bezpośrednie sterowanie momentem silnika indukcyjnego zasilanego z 3-poziomowego. przekształtnika MSI z kondensatorami o zmiennym potencjale
Bezpośrednie sterowanie momentem silnika indukcyjnego zasilanego z 3-poziomowego przekształtnika MSI z kondensatorami o zmiennym potencjale przekształtnika MSI z kondensatorami o zmiennym potencjale 1
SYSTEMY ELEKTROMECHANICZNE
SYSTEMY ELEKTROMECHANICZNE kie. Elektotechnika, studia stopnia stacjonane, sem. 1, 010/011 SZKIC DO WYKŁADÓW SILNIKI BEZSZCZOTKOWE Z MAGNESAMI TRWAŁYMI (SBMT) (1) MODELE OBWODOWE DYNAMICZNE Mieczysław
Zasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA PODSTAWY TEORETYCZNE
SILNIK INDUKCYJNY SEROWANY Z WEKOROWEGO FALOWNIKA NAPIĘCIA PODSAWY EOREYCZNE 1. Poawowe cele teowana wektoowego lnka ndukcyjnego klatkowego Cągła kontola wzajemnego położena zmennych wektoowych pzetzennych
Maszyny Elektryczne i Transformatory st. st. sem. III (zima) 2012/2013
Kolokwium poprawkowe Wariant C azyny Elektryczne i Tranormatory t. t. em. III (zima) 01/013 azyna Aynchroniczna Trójazowy ilnik indukcyjny pierścieniowy ma natępujące dane znamionowe: P 13 kw n 147 or/min
PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
WYKORZYSTANIE MODELI CIEPLNYCH SILNIKÓW INDUKCYJNYCH DO ESTYMACJI PRĘDKOŚCI OBROTOWEJ
Zezyty Poblemowe Mazyny Elektyczne N 82/29 153 Tomaz Mnich Politechnika Śląka, Gliwice WYKORZYSTANIE MODELI CIEPLNYCH SILNIKÓW INDUKCYJNYCH DO ESTYMACJI PRĘDKOŚCI OBROTOWEJ MAKE USE OF THERMAL EQUIVALENT
WYKRYWANIE USZKODZEŃ UZWOJENIA WIRNIKA PRZEKSZTAŁTNIKOWEGO UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM
Zezyty Polemowe Mazyny Elektyczne N 87/2 79 oet Wiezicki, Czeław T. Kowalki Politechnika Wocławka WYKYWANIE USZKODZEŃ UZWOJENIA WINIKA PZEKSZTAŁTNIKOWEGO UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM OTO FAULT
Mechanika ruchu obrotowego
Mechanika uchu obotowego Fizyka I (Mechanika) Wykład VII: Ruch po okęgu Ruch w jednoodnym polu elektycznym i magnetycznym Pawa uchu w układzie obacajacym się Pojęcia podstawowe Układ współzędnych Służy
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE
Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski
SEKCJA AUTOMATYKI, ELEKTROTECHNIKI, BIOCYBERNETYKI I TELEKOMUNIKACJI
I SESJA STUENCKICH KÓŁ NAUKOWYCH PIONU HUTNICZEGO AKAEII GÓRNICZO - HUTNICZEJ I. STANISŁAWA STASICA W KRAKOWIE SEKCJA AUTOATYKI, ELEKTROTECHNIKI, BIOCYBERNETYKI I TELEKOUNIKACJI Koła naukowe: AGNESIK,
5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego
5. Regulacja czętotlwoścowa pędkośc obotowej lnka ndukcyjnego klatkowego 5.1 Zaada egulacj czętotlwoścowej - waunk optymalzacj tatycznej; 5.2 Regulacja kalana pędkośc obotowej ( U/f); 5.3 Regulacja wektoowa
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
= ± Ne N - liczba całkowita.
POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9
WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH
LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zaządzania Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n 4 WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH Cel ćwiczenia:
WYGŁADZANIE CHARAKTERYSTYKI ZADAWANIA STRUMIENIA W NAPĘDACH ELEKTRYCZNYCH Z OSŁABIANIEM POLA
Zezyty Poblemowe Mazyny Elektyczne N 3/01 (96) 147 Andzej Dębowki, Rafał Nowak Politechnika Łódzka, Łódź WYGŁADZANIE CHARAKTERYSTYKI ZADAWANIA STRUMIENIA W NAPĘDACH ELEKTRYCZNYCH Z OSŁABIANIEM POLA SMOOTHING
Stabilność adaptacyjnych obserwatorów zmiennych stanu silnika indukcyjnego o wzmocnieniach dobieranych optymalizacyjnie
Ukazuje ię od 1919 oku 6'16 Ogan Stowazyzenia Elektyków Polkich Wydawnictwo SIGMA-NO Sp. z o.o. Roman NIESRÓJ 1, Akadiuz LEWICKI 2, adeuz BIAŁOŃ 1, Maian PASKO 1 Politechnika Śląka, Intytut Elektotechniki
Wykład 15. Reinhard Kulessa 1
Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI
8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,
Wykaz oznaczeń: i ra, i rb, i rc, i sa, i sb, i sc,
W_MIKROKONTROERZE DSP - TMS20F2406 Wykaz oznaczeń: i A, i B, i C, i A, i B, i C, J M e M p R R U d A, B, C, A, B, C, Θ A, B, C, A, B, C, Ω Ω pąd inika fazie (A, B, C), pąd tojana fazie (A, B, C), oent
Składowe przedmiotu MECHANIKA I MECHATRONIKA. mechanika techniczna podstawy konstrukcji maszyn mechatronika
Składowe pzedmiotu MECHANIKA I MECHATRONIKA mechanika techniczna podstawy konstukcji maszyn mechatonika mechanika techniczna mechanika ogólna (teoetyczna): kinematyka (badanie uchu bez wnikania w jego
Opis ćwiczeń na laboratorium obiektów ruchomych
Gdańsk 3.0.007 Opis ćwiczeń na laboatoium obiektów uchomych Implementacja algoytmu steowania obotem w śodowisku symulacyjnym gy obotów w piłkę nożną stwozonym w Katedze Systemów Automatyki Politechniki
Synteza obserwatora adaptacyjnego strumienia magnetycznego oraz prędkości kątowej układu napędowego z maszyną asynchroniczną
Łukaz WALUŚ, Maian Roch DUBOWSKI Politechnika Białotocka, Kateda Enegoelektoniki i Napędów Elektycznych doi:0.599/48.207..3 Synteza obewatoa adaptacyjnego tumienia magnetycznego oaz pędkości kątowej układu
Transmitancja widmowa bieguna
Tranmitancja widmowa bieguna Podtawienie = jω G = G j ω = j ω Wyodrębnienie części rzeczywitej i urojonej j G j ω = 2 ω j 2 j ω = ω Re {G j ω }= ω 2 Im {G j ω }= ω ω 2 Arg {G j ω }= arctg ω 2 Moduł i faza
O y. Rys Opis położenia punktu za pomocą wektora wodzącego
5..1. To, pędkość i pzśpiezenie punktu Rozpatzm uch punktu mateialnego względem pzjętego układu odnieienia uważanego za nieuchom. b poznać uch tego punktu, w każdej chwili muim mieć możliwość wznaczenia
( ) ( ) s = 5. s 2s. Krzysztof Oprzędkiewicz Kraków r. Podstawy Automatyki Zadania do części rachunkowej
Kzyztof Opzędiewicz Kaów 09 0 0. Zajęcia : (ba zadań-wpowadzenie) Zajęcia : (ba zadań wyłącznie część laboatoyjna) Podtawy Automatyi Zadania do części achunowej Zajęcia : Chaateytyi czaowe podtawowych
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Dobór parametrów silnika indukcyjnego dużej mocy
Dobó paametów ilnika indukcyjnego dużej mocy Ryzad Aendt Andzej Kopczyńki Wydział Elektotechniki i Automatyki Politechnika Gdańka Stezczenie: W atykule pzedtawiono tzy typy tatycznych modeli matematycznych
należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło
07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.
Wykład 10. Reinhard Kulessa 1
Wykład 1 14.1 Podstawowe infomacje doświadczalne cd. 14. Pąd elektyczny jako źódło pola magnetycznego 14..1 Pole indukcji magnetycznej pochodzące od nieskończenie długiego pzewodnika z pądem. 14.. Pawo
00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.
1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego
ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH
ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu
INSTRUKCJA DO ĆWICZENIA
NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.
Podstawowe układy pracy tranzystora bipolarnego
L A O A T O I U M P O D T A W L K T O N I K I I M T O L O G I I Podtawowe układy pacy tanzytoa bipolanego Ćwiczenie opacował Jacek Jakuz 4A. Wtęp Ćwiczenie umożliwia pomia i poównanie paametów podtawowych
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
STEROWANIE WG. ZASADY U/f = const
STEROWANIE WG. ZASADY U/f = cont Rozruch bezpośredni ilnika aynchronicznego (bez układu regulacji, odpowiedź na kok wartości zadanej napięcia zailania) Duży i niekontrolowany prąd przy rozruchu Ocylacje
Układ kaskadowy silnika indukcyjnego pierścieniowego na stałą moc
Ćwiczenie 14 Układ kakadowy ilnika indukcyjnego ieścieniowego na tałą moc 14.1. Pogam ćwiczenia 1. Poznanie tuktuy układu omiaowego, budowy i właściwości naędowych kakady zawoowo-mazynowej tyu P = cont.
00507 Praca i energia D
00507 Paca i enegia D Dane oobowe właściciela akuza 00507 Paca i enegia D Paca i moc mechaniczna. Enegia mechaniczna i jej kładniki. Zaada zachowania enegii mechanicznej. Zdezenia dokonale pęŝyte. ktualizacja
Lista zadań nr 1 - Wektory
Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)
Układ napędowy z silnikiem indukcyjnym i falownikiem napięcia
Ćwiczenie 13 Układ napędowy z ilnikiem indukcyjnym i falownikiem napięcia 3.1. Program ćwiczenia 1. Zapoznanie ię ze terowaniem prędkością ilnika klatkowego przez zmianę czętotliwości napięcia zailającego..
MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH
Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie
l b sin π + k m - współczynnik przeliczeniowy (dla R i X ) r 5.2. Obliczenie parametrów schematu zastępczego mm - średnia długość
5.. Oiczenie petów cetu ztępczego 5... ezytncj jednej fzy uzwojeni tojn z N γ Cu ( α ϑ S c Cu z ( - śedni długość zwoju. π K ( d d - śedni długość p połączeni czołowego. K wpółczynnik wydłużeni połączeni
LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO
Intytut Mazyn, Napędów i Pomiarów Elektrycznych Politechniki Wrocławkiej ZAKŁAD NAPĘDÓW ELEKTRYCZNYCH LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO Bezpośrednie terowanie momentem ilnika indukcyjnego
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych MASZYNY I NAPĘ D ELEKTRYCZNY II
POLITECHNIKA GDAŃSKA Wydział Elektotechniki i Automatyki Kateda Enegoelektoniki i Maszyn Elektycznych MATERIAŁY POMOCNICZE DO LABORATRIUM MASZYNY I NAPĘ D ELEKTRYCZNY II PODSTAWY DYNAMIKI MASZYN ELEKTRYCZNYCH
OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI
Michał Majchrowicz *, Wiesław Jażdżyński ** OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI 1. WSTĘP Silniki reluktancyjne przełączalne ze względu na swoje liczne
Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie
Simulink Wprowadzenie: http://me-www.colorado.edu/matlab/imulink/imulink.htm interaktywny pakiet przeznaczony do modelowania, ymulacji, analizy dynamicznych układów ciągłych, dykretnych, dykretno-ciągłych
Analiza działania rozszerzonego obserwatora prędkości w szerokim zakresie zmian prędkości maszyny indukcyjnej
Zbigniew RZEMIŃSI Daniel WACHOWIA Politechnika Gdańka Wdział Elektotechniki i Automatki ateda Automatki Napędu Elektcznego Analiza działania ozzezonego obewatoa pędkości w zeokim zakeie zmian pędkości
WPŁYW RODZAJU WYMUSZENIA NA WYBÓR STRUKTURY STEROWANIA WEKTOROWEGO
Zezt Poblemowe azn Elektczne N 75/2006 41 Wojciech G. Zielińi Joanna ichałowa Politechnika Lubela Lublin WPŁYW RODZAJ WYSZENA NA WYBÓR STRKTRY STEROWANA WEKTOROWEGO SELECTON OF A VECTOR CONTROL STRCTRE
2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B
PRZYKŁAD A Utwozyć model sieci z dwuuzwojeniowym, tójfazowym tansfomatoem 110/0kV. Model powinien zapewnić symulację zwać wewnętznych oaz zadawanie watości początkowych indukcji w poszczególnych fazach.
WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA
Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie
POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
IV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
WPŁYW ASYMETRII SZCZELINY POWIETRZNEJ NA WARTOŚĆ NAPIĘĆ I PRĄDÓW WAŁOWYCH W SILNIKACH INDUKCYJNYCH DUśEJ MOCY
Zezyty Poblemowe Mazyny Elektyczne N 81/29 73 Boniław Dak, Piot Zientek, Roman Nietój, Andzej Boboń Politechnika Śląka, Gliwice Józef Kwak, Zabzańkie Zakłady Mechaniczne, Zabze Jan Maek Lipińki, Zakład
magnetyzm cd. ver
ve-28.6.7 magnetyzm cd. paca pzemieszczenia obwodu w polu F F Ιl j ( ) (siła Ampee a) dw Φ Fdx Ι ldx ΙdS ds ds dφ ds dw ΙdΦ ( Ι ds) stumień dx dla obwodu: W Ι dφ Ι ( Φ ) 2 Φ 1 paca wykonana jest kosztem
a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E
Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań
Oddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika
s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s
Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności
WPROWADZENIE. Czym jest fizyka?
WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych
Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE
Magnetyzm Wykład 5 1 Wocław Univesity of Technology 14-4-1 Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY? POLE ELEKTRYCZNE POLE MAGNETYCZNE Jak wytwozyć pole magnetyczne? 1) Naładowane elektycznie
Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I
Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią
Podstawowe konstrukcje tranzystorów bipolarnych
Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii
Komputerowa symulacja doświadczenia Rutherforda (rozpraszanie cząstki klasycznej na potencjale centralnym
Pojekt n C.8. Koputeowa syulacja doświadczenia Ruthefoda (ozpaszanie cząstki klasycznej na potencjale centalny (na podstawie S.. Koonin "Intoduction to Coputational Physics") Wpowadzenie Cząstka o asie
PERTURBACJE Z OBLICZANIEM POLA MAGNETYCZNEGO SOLENOIDU
Kytyn PAWLUK PERTURBACJE Z OBLICZANIEM POLA MAGNETYCZNEGO SOLENOIDU STRESZCZENIE Pzeanalizowano algoytmy do obliczania indukcji magnetycznej w olenoidzie z uwzględnieniem modeli tuktualnych o óŝnych topniach
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w
RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności
θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z
IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz
OPTYMALIZACJA PRZETWARZANIA ENERGII DLA MAŁYCH ELEKTROWNI WODNYCH Z GENERATORAMI PRACUJĄCYMI ZE ZMIENNĄ PRĘDKOŚCIĄ OBROTOWĄ
Zezyty oblemowe Mazyny Elektyczne N 9/ Daiuz Bokowki, Tomaz Węgiel olitechnika Kakowka OTYMALZACJA RZETWARZANA ENERG DLA MAŁYC ELEKTROWN WODNYC Z GENERATORAM RACUJĄCYM ZE ZMENNĄ RĘDKOŚCĄ OBROTOWĄ ENERGY
Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych
ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na