23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

Wielkość: px
Rozpocząć pokaz od strony:

Download "23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA"

Transkrypt

1 . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna tcna do płata mieniająca ię w poób ciągł wa e mianą pnkt tcności. Płat dan ównaniami paametcnmi możem apiać w natępjącej potaci wektoowej: ( ) [ ( ) ( ) ( )] () Niech f() będie fnkcją okeśloną i ciągłą na płacie gładkim okeślonm ównaniami paametcnmi jak wżej. Powiechnię dielim na n dowolnch cęści k o polach i w każdej nich wbieam dowoln pnkt A ) k k... n. Roważm ciąg m całkowch fnkcji f() k( k k n n f k ( k k k ) k.

2 dla któego lim d gdie d n jet makmalną śednicą n n obaów... n. Jeżeli itnieje ganica lim n f n k ( k k k ) k nieależna od dokonanego podiał i od wbo pnktów A k to nawam ją całką powiechniową nieoientowaną fnkcji f() na powiechni i onacam df f ( ) d tn. f ( ) d lim ( k k k ) k n f n k P pjętch ałożeniach można wkaać że f ( ) d f [ ( ) ( ) ( ) ] dd gdie [ ] [ ] dłgość wektoa. a onaca W cególności gd powiechnia dana jet w potaci jawnej: g() () to powż wó pjmie potać: [ g( ) ] ( g ) ( g ) dd f ( ) d f..

3 Pkład Oblicć całkę powiechniową nieoientowaną ( ) d gdie powiechnia jet cęścią tożka dla i >. Rowiąanie Z ównania mam gdie mienne i należą do koła o ównani. Wkotam wó [ g( ) ] ( g ) ( g ) dd f ( ) d f Ponieważ ównanie powiechni jet w potaci jawnej więc i oa. tąd ( ) d ( ) dd Pechodąc do wpółędnch biegnowch co ϕ in ϕ gdie ϕ π mam π ( ) dd ϕ π d d π.

4 . Pkład Oblicć całkę powiechniową nieoientowaną d gdie jet cęścią płacn najdjącą ię w piewm oktancie. Rowiąanie Powiechnia ma ównanie kąd aś dla i mam oganicenia. tąd. Wkotam wó [ ] ( ) ( ) dd g g g f d f ) ( ) ( Otmjem ( ) dd d d d d Pkład Oblicć całkę powiechniową nieoientowaną d R gdie jet powiechnią półkli R.

5 .. Intepetacja geometcna całki powiechniowej nieoientowanej Całka d pedtawia pole płata. Pkład Oblicć pole powiechni jaką e fe 5 wcina walec. Rowiąanie Możem oważć pole połow tej powiechni dla > bowiem powiechnia jet metcna wględem płacn OXY. Góna cęść powiechni dana jet ównaniem jawnm 5 gdie mienne i należą do koła o ównani. Wted i 5 5 oa Zatem.5

6 d 5 dd. 5 Pechodąc do wpółędnch biegnowch co ϕ in ϕ gdie ϕ π mam [ ] 5 ( 5 5) dϕ 5 d 5π π 5 π... Intepetacja ficna całki powiechniowej nieoientowanej Jeżeli fnkcja ρ() jet gętością powiechniową ma płata to. Maę płata pedtawia całka m ρ ( ) d.. Moment tatcne oa bewładności płata wględem odpowiednich oi i płacn kład pedtawione ą w tabeli: Moment wględem tatcne płata Bewładności płata płacn OXY M ( ) d ρ B ρ( ) d.6

7 płacn OXZ płacn OYZ M ( ) d oi OX oi OY ρ M ( ) d ρ M ρ( ) d M ρ( ) d oi OZ pnkt () M ρ( ) d B ρ( ) d V B ρ( ) ddd ( ) ( ) ( ) M ρ( ) d B ρ( ) d B ρ( ) d B ρ( ) d ( ) B ρ( ) d. Wpółędne śodka ciężkości dane ą woami: M m M m M m. Jeżeli fnkcja δ ( ) jet gętością powiechniową ładnk ołożonego na płacie to całka W δ ( ) d pedtawia całkowit ładnek elektcn ołożon na płacie. Pkład Oblicć moment tatcn wględem pnkt ( ) jednoodnej półfe R dla >. Rowiąanie.7

8 Oblicam całkę M ρ d gdie ρ cont. onaca gętość powiechniową fe. Równania paametcne fe można apiać w potaci: Rco co Rin co p cm π π :. Rin Ab wnacć M ρ d e wo f ( ) d f [ ( ) ( ) ( ) ] dd oblicam [ ] [ ] : i tąd R R [ in co Rco co ] [ Rco in Rin in Rco ] R i j k in co co co co in in in co [ co co in co in co ] R co.. Ponieważ R atem.8

9 M π π π ρ R co dd ρr d co d πρr [ in ] πρ R... Zadania.. Oblicć całkę powiechniową: a) d b) d c) d ( ) gd jet tójkątem wciętm płacn pe płacn kład... Oblicć całkę powiechniową: a) ( ) 6 d gd jet cęścią płacn 6 dla > > > b) ( R ) R dla < < c) d gd jet powiechnią bocną walca d gd jet powiechnią walca hipebolicnego leżącą nad kwadatem < < < < d) d gd jet powiechnią bocną tożka dla < <..9

10 .. Oblicć pole powiechni wciętej walcem R powiechni: a) b) c) d) R dla >... Oblicć pole powiechni: a) walca R wciętej płacnami i b) danej ównaniami paametcnmi coϕ inϕ ϕ π ϕ c) danej ównaniami paametcnmi ( b acoϕ) co θ ( b acoϕ) inθ ainϕ ϕ π θ π a b tałe..5. Oblicć maę powiechni walca R dla < < H któej gętość powiechniowa w każdm pnkcie jet odwotnie popocjonalna do kwadat odległości tego pnkt od pocątk kład wpółędnch..6. la jednoodnej półfe R > oblicć: a) maę b) śodek ciężkości c) moment bewładności wględem oi OZ..

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

1 x + 1 dxdy, gdzie obszar D jest ograniczo-

1 x + 1 dxdy, gdzie obszar D jest ograniczo- Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Zad.1 Całkę podwójną przez: a) y =, y =, = 1; b) y =, y =, y = 1; c) y =, y = 1, y = 5; d) y = ln, y = + 1, y = 1; e) y = ln, = e, y = 1;

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko Funkcje analitycne Wykład 3. Zastosowanie achunku esiduów do owiąywania poblemów analiy ecywistej Paweł Mlecko Funkcje analitycne ok akademicki 8/9 Plan wykładu W casie wykładu omawiać będiemy astosowanie

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

KURS CAŁKI WIELOKROTNE

KURS CAŁKI WIELOKROTNE KURS CAŁKI WIELOKROTNE Lekcja Całki potójne ZADANIE DOMOWE www.etapez.pl Stona 1 Częśd 1: TEST Zaznacz popawną odpowiedź (tylko jedna jest pawdziwa). Pytanie 1 Obszaem całkowania w całce potójnej jest:

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia

Przykład 6.1. Przestrzenny stan naprężenia i odkształcenia Prkład Pretrenn tan naprężenia i odktałcenia Stan naprężenia Stan naprężenia w punkcie jet określon a pomocą diewięciu kładowch, które onacam literą odpowiednimi indekami Pierw indek onaca normalną ewnętrną

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Guanajuato, Mexico, August 2015

Guanajuato, Mexico, August 2015 Guanajuao Meico Augus 15 W-3 Jaosewic 1 slajdów Dnamika punku maeialnego Dnamika Układ inecjaln Zasad dnamiki: piewsa asada dnamiki duga asada dnamiki pęd ciała popęd sił ecia asada dnamiki pawo akcji

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Naa -Japonia W-3 (Jaosewic 1 slajdów Dynamika punku maeialnego Dynamika Układ inecjalny Zasady dynamiki: piewsa asada dynamiki duga asada dynamiki; pęd ciała popęd siły ecia asada dynamiki (pawo akcji

Bardziej szczegółowo

KINEMATYKA. Kinematyka jest częścią mechaniki opisującą ruch obiektów bez wchodzenia w

KINEMATYKA. Kinematyka jest częścią mechaniki opisującą ruch obiektów bez wchodzenia w KINEMATYKA Kinematka jet częścią mechaniki opiującą uch iektów bez wchodzenia w pzczn wtępowania uchu Ruch jet względn i zawze jet opiwan w okeślonm układzie wpółzędnch nazwanm układem odnieienia Układ

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

Pręty silnie zakrzywione 1

Pręty silnie zakrzywione 1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana

Matematyka 2. Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Matematyka 2 Elementy analizy wektorowej cz IV Całka powierzchniowa niezorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 16, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 16, Radosław Chrapkiewicz, Filip Ozimek Podstaw Fiki IV Optka elementami fiki współcesnej wkład 16, 16.04.01 wkład: poka: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wkład 15 - prpomnienie prepis Hugensa na propagację

Bardziej szczegółowo

Czarnodziurowy Wszechświat a ziemska grawitacja

Czarnodziurowy Wszechświat a ziemska grawitacja biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 16, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 16, Mateusz Winkowski, Łukasz Zinkiewicz Podstaw Fiki III Optka elementami fiki współcesnej wkład 16, 4.11.017 wkład: poka: ćwicenia: Cesław Radewic Mateus Winkowski, Łukas Zinkiewic Radosław Łapkiewic Wkład 15 - prpomnienie prepis Hugensa na

Bardziej szczegółowo

=I π xy. +I π xz. +I π yz. + I π yz

=I π xy. +I π xz. +I π yz. + I π yz GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π

Bardziej szczegółowo

J. Szantyr Wykład 11 Równanie Naviera-Stokesa

J. Szantyr Wykład 11 Równanie Naviera-Stokesa J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Całka krzywoliniowa niezorientowana Niech R 3 będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- γ taką, że

Całka krzywoliniowa niezorientowana Niech R 3 będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- γ taką, że Całka krzywoliniowa niezorientowana Niech R będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- taką, że t α, β : r t = ( t, y t, z t ) ef. Mówimy, że krzywa jest kawałkami gładka funkcja r t ma

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

x y = 2z. + 2y, z 2y df

x y = 2z. + 2y, z 2y df . Funkcje wielu zmiennych i funkcje uwikłane Zadanie.. Obliczyć przybliżoną wartość wyrażenia (, ) (,). Korzystamy z przybliżenia f, y) f, y ) + x x, y ) + y y, y ), gdzie x = x x a y = y y. Przybliżenie

Bardziej szczegółowo

Dynamika bryły sztywnej

Dynamika bryły sztywnej W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j

Bardziej szczegółowo

x y = 2z. + 2y f(x, y) = ln(x3y ) y x

x y = 2z. + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,

Bardziej szczegółowo

Analiza Matematyczna Praca domowa

Analiza Matematyczna Praca domowa Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Podstawy Automatyzacji Okrętu

Podstawy Automatyzacji Okrętu Politechnika dańka Wdiał Oceanotechniki i Okętownictwa St. inż. I topnia e. IV kieunek: Oceanotechnika Specjalności Okętowe Podtaw Autoatacji Okętu MODEL MAEMACZ UCHU SAKU M. H. haei Maec 07 Podtaw autoatacji

Bardziej szczegółowo

Lista 3 CAŁKI KRZYWOLINIOWE I POWIERZCHNIOWE. K cykloida c x y ds K x y x r t t t y r t t t t ) ( 2 ) + ( 2 ) = {(, ) : 1 1 = }

Lista 3 CAŁKI KRZYWOLINIOWE I POWIERZCHNIOWE. K cykloida c x y ds K x y x r t t t y r t t t t ) ( 2 ) + ( 2 ) = {(, ) : 1 1 = } Lista CAŁI RZYWOLINIOWE I POWIERZCHNIOWE Zad 1. Obliczć całki krzwoliniowe nieskierowane po wskazanch krzwch: ds a) = {(, ) : 0 1 = } + + ds = {(, ) : = r( t sin t), = r(1 cos t), 0 t } r > 0 ustalone

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Podstawy Automatyzacji Okrętu

Podstawy Automatyzacji Okrętu Politechnika dańka Wdiał Oceanotechniki i Okętownictwa St. inż. I topnia e. IV kieunek: anpot Podtaw Autoatacji Okętu 3 MODEL MAEMAYCZY UCHU SAKU M. H. haei Maec 017 Autoatacja tatku. Model ateatcn 1 3.

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta. Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI

Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI Janus Tpek TENSOR MOMENTU BEZWŁADNOŚC Scecn, maec 994 Temat pac: Tenso momentu bewładnośc Cel pac: Oblcene tensoa momentu bewładnośc dla układu składającego sę klku mas punktowch oa jego wkostane do wnacena

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana

Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Matematyka 2 Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe Matematka Element anali wektorowej c I Pole wektorowe Literatura M.Gewert Z.Skoclas; Element anali wektorowej; Oficna Wdawnica GiS Wrocław 000 W.Żakowski W.Kołodiej; Matematka c II; WNT Warsawa 1984 W.Leksiński

Bardziej szczegółowo

Kinematyka odwrotna:

Kinematyka odwrotna: Kinematka owotna: ozwiązanie zaania kinematki owotnej owaza ię o wznazenia maiez zekztałenia H otai H E Wznazenie tej maiez olega na znalezieni jenego bąź wztkih ozwiązań ównania: T T n n q... q gzie q...

Bardziej szczegółowo

Arkusz 4. Elementy geometrii analitycznej w przestrzeni

Arkusz 4. Elementy geometrii analitycznej w przestrzeni Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej Całka oznaczona zastosowania (wykład 9;26.11.7) Definicja całki oznaczonej dla funkcji ciagłej Definicja 1 Załózmy, że funkcja f jest ciagła na przedziale [a, b]. Całkę oznaczona z funkcji ci b a f(x)dx

Bardziej szczegółowo

SIMR 2012/2013, Analiza 2, wykład 14,

SIMR 2012/2013, Analiza 2, wykład 14, IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach ręopi do żyt łżbowego INSYU ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORAORIUM EORII SEROWANIA INSRUKCJA LABORAORYJNA ĆWICZENIE Nr 4 Minimalnoczaowe terowanie optymalne

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

EGZAMIN Z ANALIZY II R

EGZAMIN Z ANALIZY II R EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić

Bardziej szczegółowo

x y = 2z, + 2y f(x, y) = ln(x3y ) y x

x y = 2z, + 2y f(x, y) = ln(x3y ) y x . Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f

Bardziej szczegółowo

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx = achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Grawitacja: - wiąże wszystkie masy we Wszechświecie, - jest najsłabszą wśród znanych nam sił, - działa na wszystkich odległościach,

Grawitacja: - wiąże wszystkie masy we Wszechświecie, - jest najsłabszą wśród znanych nam sił, - działa na wszystkich odległościach, POLE GAWITACYJNE Fakt odkycia pe Newtona Pawa Gawitacji Powsechnej (naywanej też pawem Ciążenia Powsechnego) miał dla owoju ludkości nacnie więkse nacenie niż to sobie awycaj wyobażamy Jest to spowodowane

Bardziej szczegółowo

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a;

Algebra liniowa. Zadania przygotowujące do egzaminu: .Wskazówka: Zastosować wzór de Moivre'a; emer leni 5/6 lgebra liniowa Znaleźć i nakicować biór 8 C j ; a) ( ) b) { C j j } c) { C Im( ) } ; Zadania rgoowjące do egamin Wkaówka Zaoować wór de Moire'a; d) C Im Wnacć licb dla kórch macier je odwracalna

Bardziej szczegółowo

Opis ruchu we współrzędnych prostokątnych (kartezjańskich)

Opis ruchu we współrzędnych prostokątnych (kartezjańskich) Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A

Bardziej szczegółowo

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:

Bardziej szczegółowo

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:

Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

ZASTOSOWANIA CAŁEK OZNACZONYCH

ZASTOSOWANIA CAŁEK OZNACZONYCH YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,

Bardziej szczegółowo

Zagadnienie dwóch ciał oddziałujących siłą centralną Omówienie ruchu ciał oddziałujących siłą o wartości odwrotnie proporcjonalnej do kwadratu ich

Zagadnienie dwóch ciał oddziałujących siłą centralną Omówienie ruchu ciał oddziałujących siłą o wartości odwrotnie proporcjonalnej do kwadratu ich Zagadnienie dwóch ciał oddziałujących iłą centalną Oówienie uchu ciał oddziałujących iłą o watości odwotnie popocjonalnej do kwadatu ich odległości F F Siła centalna F F F F Dla oddziaływania gawitacyjnego

Bardziej szczegółowo