Dynamika układu punktów materialnych
|
|
- Natalia Kowalczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł dałaące w układe Układ puktów ateralch, którch ruch e est skrępowa żad węa, awa sę układe puktów swobodch (p. koeta). Układ puktów ateralch, którch ruch est skrępowa ałożo a te pukt węa, awa sę układe puktów eswobodch (p. cało stwe). Pukt w układe puktów ateralch oddałuą a sebe sła wewętr, podlegaąc treceu prawu Newtoa. Zate lub, +, 0.,, Prof. Edud Wttbrodt
2 Zate, sua geoetrca wsstkch sł wewętrch dla dowolego układu puktów ateralch est rówa ero, cl, 0. Łatwo też wkaać, że sua geoetrca oetów wsstkch sł wewętrch wględe dowolego puktu est rówa ero, cl O, r r r r,, Sł dałaące a pukt aterale, układu ch proee o pocątku w pukce O, r 0. Prof. Edud Wttbrodt
3 Rówae ruchu -tego puktu ateralego o ase cost a postać a d W lub ( v ) W,,,...,, dt gde: W wpadkowa wsstkch sł dałaącch a -t pukt ateral, która est suą geoetrcą sł ewętrch P wsstkch sł wewętrch W P,,,...,. +,,,, P, Układ sł dałaącch a -t pukt ateral Dodaąc do sebe stroa rówaa ruchu wsstkch puktów ateralch otrue d v W ( ) dt lub d v W dt. (*) Prof. Edud Wttbrodt
4 Wrażee v est suą geoetrcą wektorów pędów wsstkch puktów ateralch układu. Predstawa oo wektor pędu układu puktów ateralch, co oaca sbole p v. Natoast wektor sł wpadkowe W est rów W W P +, P +, P + 0 P est o suą wsstkch sł ewętrch układu. Zate rówae (*) prue postać (rówae ruchu układu puktów ateralch) dp W dt. (**) Twerdee Pochoda wględe casu pędu układu puktów ateralch rówa est sue geoetrce wsstkch sł ewętrch tego układu. Prof. Edud Wttbrodt
5 Twerdee o ruchu środka as rówae opsuące współręde środka as dla brł edorode, w apse wektorow, oża predstawć w postac r rd, gde: d lub dla układu cał w postac r r. Zate pęd układu puktów ateralch oża prekstałcć w sposób astępuąc dr d d ( ) p v r r dt dt dt d p r v, dt lub ( ) gde: ateralch. asa całkowta układu puktów ateralch, v dr prędkość środka as układu puktów dt Rówae (**) apsać oża w postac (twerdee o ruchu środka as układu puktów ateralch) ( ) dp d v dv W lub ostatece w postac a dt dt dt W. Twerdee Wektor pędu układu puktów ateralch rów est locow as całkowte układu wektora prędkośc ego środka as. Twerdee 3 Środek as układu puktów ateralch porusa sę tak, ak pukt ateral, w któr skupoa est cała asa układu do którego prłożoe są wsstke sł ewętre. Prof. Edud Wttbrodt
6 Poęca podstawowe dak brł Geoetra as: asa brł, środek as rokład as brł Masa brł γ d ρ dv dv ρ dv g ( V ) ( V ) ( V ) ρ V Współręde środka as c d ( ), c d ( ), c ( ) d lub rc () r d w apse wektorow UWAGA: Dla brł edorode ( ρ cost ) aduące sę w edorod polu grawtac ( g cost ) środek as pokrwa sę e środke cężkośc środke geoetrc. Prof. Edud Wttbrodt
7 Masowe oet bewładośc Rokład as cała (układu cał) wględe puktu (begua), os lub płasc charakteruą asowe oet bewładośc. Masow oet bewładośc wględe puktu, os lub płasc est suą (całką) loców as pre kwadrat ch odległośc od puktu, os lub płasc. a) ρ b) ρ d r ρ r ρ O ρ O ρ Odległośc od puktu, os płasc: a) środka as brł o ase o skońcoch warach, b) as eleetare d brł o ase rołożoe Prof. Edud Wttbrodt
8 Beguow oet bewładośc oblca ależośc J O r lub JO r d, (4.5) atoast osowe oet bewładośc: J ρ lub J ρ d, J J ρ ρ lub lub ρ J d, (4.5) J ρ d, aś płascowe oet bewładośc: J lub J d, J J lub lub J d, (4.53) J d. Prof. Edud Wttbrodt
9 Poadto rokład as charakteruą oet locowe wae oeta dewac lub oeta bocea. Określa sę e ależośc: D D D lub lub lub D d, D d, (4.54) D d. Prof. Edud Wttbrodt
10 Twerdee Masow oet bewładośc wględe os rów est sue asowch oetów bewładośc wględe dwóch waee prostopadłch płasc tworącch tę oś J J + J. (4.55) Dowód: ρ ( + ) + + J J J. Twerdee Beguow, asow oet bewładośc est rów sue asowch oetów bewładośc wględe trech waee prostopadłch płasc prechodącch pre begu JO J + J + J. (4.56) Twerdee 3 Podwó beguow, asow oet bewładośc brł est rów sue asowch oetów bewładośc wględe trech, waee prostopadłch os, prechodącch pre begu J O J + J + J. (4.57) Prof. Edud Wttbrodt
11 Masowe oet bewładośc pręt cek l l I I I 0 asa pręta prostopadłośca c a b I (a + c ) I (b + c ) I (a + b ) asa prostopadłoścau walec r I r r h I I + 4 h asa walca kula r I I I r 5 asa kul Prof. Edud Wttbrodt
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł
Bardziej szczegółowoSiła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
Bardziej szczegółowoMechanika teoretyczna
pdkow prestreego ukłdu sił ieżc ecik teoretc kłd r 56 Ukłd prestree. etod grfic: = 2 = = 2 3 2 3 = i 3 2 2 2 3 2 2 litc etod wci wpdkowej α = 2 cosα = = γ 2 β 2 cos α cos β cos γ = cos β = = 2 cosγ = =
Bardziej szczegółowoENERGIA SPRĘŻYSTA 1 1. BILANS ENERGETYCZNY 2. RÓWNANIE STANU, POTENCJAŁ SIŁ WEWNĘTRZNYCH
NRG SPRĘŻYST. BLNS NRGTYCZNY.. PODSTO POJĘC Układ ic - ciało (lub układ ciał) łożoe uktów aterialch Otoceie - obsar otacając układ ic Ziee stau terodaicego - araetr charakterujące sta układu i otoceia
Bardziej szczegółowocz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Bardziej szczegółowoNovosibirsk, Russia, September 2002
Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego
Bardziej szczegółowoDynamika bryły sztywnej
W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j
Bardziej szczegółowo14. Zasady zachowania dla punktu i układu punktów materialnych: pędu, krętu, energii, zasada d Alemberta.
4. Zasad achowaa da puktu układu puktów ateach: pędu, kętu, eeg, asada d ebeta. υ p = pęd (ość uchu puktu ateaego υ F d ( υ = F pochoda wgęde casu pędu ówa jest se dałającej a da pukt v v t2 ( υ2 υ = t
Bardziej szczegółowoWykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak
D hab. ż. Władysław Atu Woźak Wykład FIZYKA I 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak Kateda Optyk Fotok Wydał Podstawowych Poblemów Techk Poltechka Wocławska http://www.f.pw.woc.pl/~woak/fyka1.html
Bardziej szczegółowoWykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak
D hab. ż. Władysław Atu Woźak Wykład FZYKA 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak stytut Fyk Poltechk Wocławskej http://www.f.pw.woc.pl/~woak/fyka.html D hab. ż. Władysław Atu Woźak ŚRODEK
Bardziej szczegółowoBRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Bardziej szczegółowoA B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
Bardziej szczegółowoSTATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Bardziej szczegółowo6.1. Rodzaje momentów bezwładności
6.. Rodaje oetów bewładości W pucie (4.4) poaliś wielości charaterujące roład as, awae oetai statci. W podach ta worach (4.0) współręde wstępują w pierwsej potęde. Preoa się, że w daice doiosłą rolę odgrwają
Bardziej szczegółowoJeśli m = const. to 0 P 1 P 2
1 PRAWA NEWTONA Prawo perwse. Każde cało trwa w spocnku lub ruchu jednostajn prostolnow, dopók sł nań dałające tego stanu ne eną. Prawo druge. Zana lośc ruchu (pędu) jest proporcjonalna wględe sł dałającej
Bardziej szczegółowoSKRĘCANIE PRĘTÓW 1 1. SFORMUŁOWANIE ZAGADNIENIA. q vz. q vy
SKĘCNE PĘTÓW 1 1. SFOUŁOWNE ZGDNEN S q v L q v - oś pręta,, - oe główe, cetrale prekroju poprecego pręta pręt prmatc, utwerdo "puktowo" w pkt. S (0, 0, 0) poocca wola od ocążeń deko = L ocążoe łam o gętośc
Bardziej szczegółowoOBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
Bardziej szczegółowoWYKŁAD 7. MODELE OBIEKTÓW 3-D3 część Koncepcja krzywej sklejanej. Plan wykładu:
WYKŁAD 7 MODELE OIEKTÓW -D cęść Pla wkład: Kocepcja krwej sklejaej Jedorode krwe -sklejae ejedorode krwe -sklejae Powerche eera, -sklejae URS. Kocepcja krwej sklejaej Istotą praktcego pkt wdea wadą krwej
Bardziej szczegółowoZASADY ZACHOWANIA W FIZYCE
ZASADY ZACHOWAIA: ZASADY ZACHOWAIA W FIZYCE Energii Pędu Moentu pędu Ładunku Liczb barionowej ZASADA ZACHOWAIA EERGII Praca sił zewnętrznej W = ΔE calk Ziana energii całkowitej Jeżeli W= to ΔE calk = ZASADA
Bardziej szczegółowoOpis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody
Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn
Bardziej szczegółowoPłaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2
Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )
Bardziej szczegółowoMECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Bardziej szczegółowoSprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
Bardziej szczegółowoWarunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
Bardziej szczegółowover ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Bardziej szczegółowoWyznaczanie środka ciężkości i obliczanie momentów bezwładności bryły sztywnej 3
Wynaane środka ężkoś oblane oentów bewładnoś bryły stywnej Podstawowe ależnoś Współrędne środka ężkoś bryły stywnej wględe płasyn układu współrędnyh xy są następująe: płasyna Πy płasyna Πx płasyna Πxy
Bardziej szczegółowoProjekt 3 Analiza masowa
Wydzał Mechaczy Eergetyk Lotctwa Poltechk Warszawskej - Zakład Saolotów Śgłowców Projekt 3 Aalza asowa Nejszy projekt składa sę z dwóch częśc. Perwsza polega projekce wstępy wętrza kaby (kadłuba). Druga
Bardziej szczegółowoGrupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Bardziej szczegółowoPYTANIA Z MECHANIKI TECHNICZNEJ STATYKA (część teoretyczna)
PYTANIA Z MECHANIKI TECHNICZNEJ STATYKA (cęść teoretc) 1. Podj omów tr prw Newto. Podstwą mechk są tr prw Newto sformułowe w 1687 r. mjące fudmetle cee w mechce wtrmłośc mterłów. Perws sd dmk (sd bewłdośc)
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowo1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
Bardziej szczegółowoMMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
Bardziej szczegółowoOpis ruchu we współrzędnych prostokątnych (kartezjańskich)
Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A
Bardziej szczegółowoProjekt 2 2. Wielomiany interpolujące
Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa
Bardziej szczegółowoPochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Bardziej szczegółowoPRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Bardziej szczegółowoŚ Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Bardziej szczegółowoŁ Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Bardziej szczegółowoŻ ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Bardziej szczegółowoŁ Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Bardziej szczegółowoDYNAMIKA UKŁADU PUNKTÓW MATERIALNYCH
WYKŁAD 3 DYNAIKA UKŁADU PUNKTÓW ATERIALNYCH UKŁAD PUNKTÓW ATERIALNYCH zbór skończoej lczby puktów materalych o zadaej kofguracj przestrzeej. Obłok Oorta Pas Kupera Pluto Neptu Ura Satur Jowsz Plaetody
Bardziej szczegółowoMoment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
Bardziej szczegółowoi = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
Bardziej szczegółowocz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Bła stwna c. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-, pok. skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/ 8-- Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka Śodek as/ śodek cężkośc
Bardziej szczegółowoALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
Bardziej szczegółowoelektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowoMATEMATYKA. Sporządził: Andrzej Wölk
MATEMATYKA Sporządzł: Adrzej ölk . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoP π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
Bardziej szczegółowoMec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.
echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoMechanika kwantowa III
Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (
Bardziej szczegółowoWyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.
Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
Pediot: Fika RUCH OBROTOWY- MECHANKA BRYŁY SZTYWNEJ Wkład 7 7/8, ia Pediot: Fika MOMENT PĘDU ENERGA KNETYCZNA W RUCHU PUNKTU MATERANEGO PO OKRĘGU Defiicja oetu pędu =v= ω p =ω = p ω Moet bewładości Jedostką
Bardziej szczegółowo( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
Bardziej szczegółowoMECHANIKA. Materiały pomocnicze do wykładu Przedmiot podstawowy w ramach kierunku Mechatronika studia stacjonarne inżynierskie. Semestr II.
ublkacja opacowaa podcas ealacj pojektu la Rowoju oltechk ęstochowskej współfasowaego pe Uę Euopejską w amach Euopejskego Fudusu Społecego. Jacek blsk MEHNIK Mateał pomocce do wkładu edmot podstawow w
Bardziej szczegółowo1 x + 1 dxdy, gdzie obszar D jest ograniczo-
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Zad.1 Całkę podwójną przez: a) y =, y =, = 1; b) y =, y =, y = 1; c) y =, y = 1, y = 5; d) y = ln, y = + 1, y = 1; e) y = ln, = e, y = 1;
Bardziej szczegółowoFUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
Bardziej szczegółowoPrzykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Bardziej szczegółowoFIZYKA R.Resnick & D. Halliday
FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela
Bardziej szczegółowoWYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
Bardziej szczegółowoFizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Bardziej szczegółowoWymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Bardziej szczegółowoMETODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
Bardziej szczegółowoI. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowox od położenia równowagi
RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wkład 5 Elemet algebr aal espoloej Pro. Ato Kooł Wdał Chemc Poltechk Wrocławskej ALGEBRA ZESPOLONA Lcb espoloe pod wględem algebracm tworą tw.
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoXLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Bardziej szczegółowoWYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11
WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne
Bardziej szczegółowoPrzedmiot dynamiki
7... Preiot aii Daia jest iałe echaii, tór ajuje się baaie ależości ię ruche ciał aterialch i siłai wwołująci te ruch. Postawą aii są prawa Newtoa prtocoe w pucie.. Ab prawa te bł słuse, w echaice ewtoowsiej
Bardziej szczegółowoAnaliza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Bardziej szczegółowodr Michał Konopczyński Ekonomia matematyczna ćwiczenia
dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom
Bardziej szczegółowoRównanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne
Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna
Bardziej szczegółowoJ. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie
J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia
Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha
Bardziej szczegółowo= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:
Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost
Bardziej szczegółowoINSTRUKCJA DO ĆWICZENIA NR 2
KATEDRA MECHANIKI STOSOWANEJ Wydzał Mehazy POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Wyzazee położee środka ężkoś układu mehazego Dr ż. K. Kęk 1.
Bardziej szczegółowoW siła działająca na bryłę zredukowana do środka masy ( = 0
Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka
Bardziej szczegółowoRóżniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Bardziej szczegółowoSiła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
Bardziej szczegółowocz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Bardziej szczegółowoMODELE OBIEKTÓW W 3-D3 część
WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego
Bardziej szczegółowodr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowoy(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Bardziej szczegółowoZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej
Bardziej szczegółowoW zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Bardziej szczegółowoGaz doskonały model idealnego układu bardzo wielu cząsteczek, które: i. mają masę w najprostszym przypadku wszystkie taką samą
Terodynaika 16-1 16 Terodynaika Założenia teorii kinetycno oekuarnej Ga doskonały ode ideanego układu bardo wieu cąstecek, które: i ają asę w najprostsy prypadku wsystkie taką saą, ii nie ają objętości
Bardziej szczegółowoPrecesja koła rowerowego
Precesja koła rowerowego L L L L g L t M M F L t F O y [( x ( x s r S y s Twerene Stenera y r s s ] x Z efncj ukłau śroka asy: y s s - oent bewłanośc wgęe os równoegłej o os prechoącej pre śroek cężkośc
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoPodstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu
Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy
Bardziej szczegółowoBryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bardziej szczegółowo