Fizyka 7. Janusz Andrzejewski
|
|
- Miłosz Sosnowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Fzyka 7 Janusz Andzejewsk
2 Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk
3 Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego częśc są zwązane ze sobą, dzęk czemu kształt cała ne ulega zmane Oś obotu Podczas obotu cała sztywnego wokół stałej os obotu, każdy punkt tego cała pousza sę po okęgu, któego śodek leży na os obotu każdy punkt zakeśla w ustalonym czase tak sam kąt. Janusz Andzejewsk 3
4 Była sztywna Była(cało) doskonale sztywne to take cało, w któym odległośc mędzy dwoma dowolnym jego punktam matealnym ne zmenają sę w takce uchu Może go stosować gdy odkształcena są małe w stosunku o wymaów cała. Punkt matealny CAŁA RZECZYWISTOŚĆ Była sztywna Janusz Andzejewsk 4
5 Potzeba nowych welkośc fzycznych 1 3 Welkośc któe zależą od mejsca w któym ozpatujemy uch: - watość wektoa pędkośc -doga Welkośc któe ne zależą od mejsca w któym ozpatujemy uch - czas obegu dookoła os obotu -kąt 5 Janusz Andzejewsk
6 Położene kątowe Położene kątowe: Ustalony keunek θ s s długość łuku okęgu pomeń okęgu Położene kątowe mezy sę w adanach(ad). Jest to welkość bezwymaowa. 1 pełny obót 360 o π/ πad 1 ad 360 o /π 57.3 o 6 Janusz Andzejewsk
7 Pzemeszczene kątowe W chwl t > t 1 Δθ Pzemeszczene kątowe: Δθθ θ 1 θ W chwl t 1 θ 1 Konwencja znaków: Δθ> 0 jeśl obót nastąpł pzecwne do uchu wskazówek zegaa Δθ< 0 jeśl obót nastąpł zgodne z uchem wskazówek zegaa Janusz Andzejewsk 7
8 Pędkość pzyśpeszene kątowe Śedna pędkość kątowa: Śedna pzyśpeszene kątowe: s θ t α s tt Pędkość kątowa (chwlowa): Pzyśpeszene kątowe (chwlowe): θ lm t 0 t dθ dt α lm t 0 t Wzoy te odnoszą sę zaówno do obacającego sę cała sztywnego jako całośc, jak do każdej cząstk tego cała. d dt Janusz Andzejewsk 8
9 Welkość wektoowa? Keunek oś obotu Zwot eguła śuby pawoskętnej (pawej ęk) Watość watość welkośc kątowej Janusz Andzejewsk 9
10 Czy kąt jest welkoścą wektoową Welkość wektoowa > dodawane welkośc wektoowych jest pzemenne a + b b + a Pzykład: Obót o 90 0 wzdłuż os x oaz y Welkośc kątowe take jak pzemeszczene kątowe, pędkość kątowa czy pzyśpeszene kątowe są tzw. pseudowektoam. Janusz Andzejewsk 10
11 Ruch lnowy obotowy Ruch lnowy a Ruch obotowy v θ x Dla uchu obotowego względem stałej os, każdy punkt na byle sztywnej obaca sę o tak sam kąt, ma taką samą pędkość kątową ma take samo pzyśpeszene kątowe Janusz Andzejewsk 11
12 Relacje pomędzy welkoścam lnowym a kątowym Welkość lnowa Welkość kątowa x θ v Janusz Andzejewsk 1 a ε dt d v t v s dt d t s θ θ dt dv a t v a s dt d t s ε ε at v v K + 0 t K ε at t v K t t K ε θ θ + +
13 Ruch po okęgu Założene: const z0 > uch da sę opsać jedną zmenną: - kątem w płaszczyźne XY - długoścą łuku okęgu Watość pędkośc ds d( θ ) dθ v dt dt dt Janusz Andzejewsk 13
14 Ruch po okęgu Pędkość wektoowo możemy zapsać: v Pzyśpeszene: ( ) d v d Janusz Andzejewsk 14 ( ) a S a N v dt d dt d dt d dt dv a ε a S ε - pzyśpeszene styczne ( ) v a N - pzyśpeszene nomalne ( ) ( ) ( ) C B A B C A C B A tożsamość
15 Ruch po okęgu Pzyśpeszene styczne a S d v dt Pzyśpeszene nomalne ε v v a N chaakteyzuje szybkość zmany lczbowej watośc pędkośc uchu; chaakteyzuje szybkość zmany keunku pędkośc uchu; Pzyśpeszene styczne nomalne są do sebe zawsze postopadłe Pzyśpeszene całkowte a a N + a S a N a S a + a N a S a Janusz Andzejewsk
16 Ruch kzywolnowy W ogólnośc obowązują wzoy dla uchu po okęgu ALE: Zamast pomena okęgu należy podstawć tzw. pomeń kzywzny R v R gdze kzywzna R jest zdefnowana: a N 1 R (θ-kąt pomędzy stycznym do kzywej na końcach łuku, s długość łuku) Uwag: -w uchu po okęgu, pzyśpeszene nomalne nazywane jest czasam pzyśpeszenem dośodkowym -w uchu jednostajnym po okęgu pzyśpeszene styczne wynos zeo dθ ds Janusz Andzejewsk 16
17 Enega knetyczna w uchu obotowym Enega knetyczna -tej cząstk E K E K 1 m v Enega knetyczna były sztywnej wynos: E K 1 1 E K m v m 1 m gdze: v Defnując moment bezwładnośc były sztywnej: E K 1 I m Enega knetyczna były sztywnej względem stałej os obotu. I Janusz Andzejewsk 17
18 Moment bezwładnośc I m Moment bezwładnośc Iwzględem danej os obotu jest to watość stała dla danego cała sztywnego okeślonej os obotu. Watość Izależy od ozłożena masy obacającego sę cała wokół os jego obotu. Im mnejszy jest moment bezwładnośc cała, tym łatwej wpawć je w uch obotowy. Janusz Andzejewsk 18
19 Chodzene begane Kótke nog mają mnejszy moment bezwładnośc nż długe. Zweze o kótkch nogach stąpa częścej nż zweze o długch nogach. Podczas begu mocno zgnamy nog w kolanach, zmnejszając ch moment bezwładnośc Janusz Andzejewsk 19
20 Momenty bezwładnośc wybanych cał Janusz Andzejewsk 0
21 TWIERDZENIE STEINERA (TWIERDZENIE O OSIACH RÓWNOLEGŁYCH) Załóżmy, że znamy moment bezwładnośc cała względem pewnej os obotu pzechodzącej pzez śodek masy, ale cało obaca sę względem nnej os, ównoległej do nej: Moment bezwładnośc cała I względem dowolnej os O ówna sę momentow bezwładnośc I tego cała względem nnej, ównoległej do nej os O pzechodzącej pzez śodek masy cała, powększonemu o loczyn masy tego cała pzez kwadat odległośc mędzy tym osam: I ' O I SM + md Wnosek: Moment bezwładnośc jest najmnejszy dla os pzechodzącej pzez śodek masy Janusz Andzejewsk 1
22 Toczene s θr ds d(θr ) dt dt v SM R Janusz Andzejewsk
23 Toczene Ruch wyłączne obotowy Ruch wyłączne + postępowy Ruch toczny Janusz Andzejewsk 3
24 Enega knetyczna uchu tocznego Enega knetyczna uchu obotowego wokół os pzechodzącej pzez śodek masy: 1 E k I SM Enega knetyczna uchu postępowego śodka masy koła: E Całkowta enega knetyczna: 1 k mv SM 1 E k I SM + 1 mv SM Janusz Andzejewsk 4
25 Moment sły Zdolność sły F do wpawana cała w uch obotowy zależy od watośc sły, odległośc pzyłożena sły od os obotu kąta pomędzy słą a amenem sły. F F F F O O O O 1) ) 3) 4) Janusz Andzejewsk 5
26 Moment sły Moment sły: M F F φ F Watość: M Fsnφ M Keunek: postopadły do F Zwot: eguła pawej ęk Oznaczena: do powezchn, zwot do katk do powezchn, zwot od katk Janusz Andzejewsk 6
27 Moment sły -uwag F F F M -ame sły F F Janusz Andzejewsk 7 F F M Moment sły zawsze jest zdefnowany względem danej os obotu
28 Moment sły a pzyśpeszene kątowe Na cząstkę o mase dmdzała sladf. df dm *a Obót powoduje moment sły : dm df dm *a * Ale a *ε, węc: dm dm ε dm ε Całkowty moment sły dzałający na całą byłę sztywną wynos: M dm dm ε I ε Janusz Andzejewsk 8
29 II zasada dynamk uchu obotowego Jeśl na pewne cało mogącej sę obacać wokół stałej (ne obacającej sę w pzestzen), o momence bezwładnośc względem tej os ównym I, dzałają zewnętzne sły, któe wyweają na to cało wypadkowy moment sły M, to w wynku tego cało będze obacać sę z pzyspeszenem kątowym ε takm, że: M I ε Gancznym pzypadkem dugej zasady dynamk dla uchu obotowego jest sytuacja, gdy wypadkowy moment sł dzałających na cało ówny jest zeo. (pewsza zasada dynamk dla uchu obotowego). Ze wzou wynka, że wówczas pzyspeszene kątowe ówneż będze ówne 0 a była obacać sę będze ze stałą pędkoścą kątową. Janusz Andzejewsk 9
30 Pzykład T Q T Θ Q Q Θ Staczane po ówn pochyłej symetycznej były bez poślzgu: x φ a ε Ruch postępowy śodka masy wzdłuż ówn ma Janusz Andzejewsk 30 Q II Ruch obotowy względem śodka masy ma + T I ε T Elmnując słę taca, otzymujemy Iε mg snθ Im wększy moment bezwładnośc, tym wolnej stacza sę cało... g snθ a I 1+ m
31 Pzykład Janusz Andzejewsk 31
32 Pzykład T Sła taca w pzypadku toczena sę bez poślzgu Q ne wykonuje pacy poneważ kąt pomędzy słą a małym pzesunęcem (odywane sę koła Θ od powezchn) wynos v Podobne, w tym pzypadku sła taca ne jest h dana popzez zależność empyczną. Q Θ Q Z zasady zachowana eneg: mgh + + mgh I0 + m0 0 + I mv m ( v 1 ) + mv mv v gh ale v oaz I m Toczący sę peśceń v gh Ślzgający sę peśceń Janusz Andzejewsk 3
33 Paca, Moc dw F ds M F snφ ( F snφ) dθ dw M dθ Jeżel moment sły M jest stały powoduje obót były o kąt θ, wówczas paca wykona pzez ten moment sły wynos: W M θ Moc: dw dt ( M dθ ) d dθ M M dt dt Janusz Andzejewsk 33
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Bardziej szczegółowoZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Bardziej szczegółowoEnergia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Bardziej szczegółowoBRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Bardziej szczegółowoObroty. dθ, cząstka W Y K Ł A D VIII. Prędkość kątowa i przyspieszenie kątowe.
Wykład z fzyk, Pot Posmykewcz 84 W Y K Ł A D VIII Oboty. Ruch obotowy jest wszędze wokół nas; od atomów do galaktyk. Zema obaca sę wokół własnej os. Koła, pzekładne, slnk, śmgła, CD, łyŝwaka wykonująca
Bardziej szczegółowoRuch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Bardziej szczegółowoRysunek 9-13 jest to pokazane na rysunku 9-14.W rezultacie, jeŝeli obroty odbywają się w r
Wykład z zyk, Pot Posmykewcz 9-5 96 Własnośc wektoowe obotów. Aby zaznaczyć keunek obotów względem ustalonej os moŝna wpowadzć plus lub mnus pzed oznaczenem pędkośc kątowej, analogczne jak to mało mejsce
Bardziej szczegółowoZASADA ZACHOWANIA PĘDU
ZASADA ZACHOWANIA PĘDU; DYNAMIKA RUCHU OBROTOWEGO PRZYPOMNIENIE: Ale dv ZASADA ZACHOWANIA PĘDU dv d a ( V) Jeśl na cało dzałają sły, to cało a pzyśpeszene popocjonalne do całkowtej dzałającej sły: p V
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno
Bardziej szczegółowo9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I
9 K A TEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 9. Spawdzene dugej zasady dynamk uchu obotowego Wpowadzene Pzez byłę sztywną ozumemy cało, któe pod wpływem dzałana sł ne zmena swego kształtu,
Bardziej szczegółowoMoment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
Bardziej szczegółowo3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa
3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne
Bardziej szczegółowo1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.
Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,
Bardziej szczegółowor i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się
Bardziej szczegółowo11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
Bardziej szczegółowoZasady dynamiki ruchu obrotowego
DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika
Bardziej szczegółowoPęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
Bardziej szczegółowocz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
Bardziej szczegółowoSiła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
Bardziej szczegółowoRUCH OBROTOWY BRYŁY SZTYWNEJ
RUCH OBROTOWY BRYŁY SZTYWNE RUCH OBROTOWY BRYŁY SZTYWNE Cało Doskonale Sztywne (Była Sztywna) model cała zeczywstego układ n oddzaływujących cząstek któych wzajemne odległośc ne ulegają zmane Cało wykonuje
Bardziej szczegółowoInercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
Bardziej szczegółowoBRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Bardziej szczegółowoPraca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.
ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena
Bardziej szczegółowover ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Bardziej szczegółowoRuch jednostajny po okręgu
Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość
Bardziej szczegółowoMoment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły
Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene
Bardziej szczegółowoMECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla
Bardziej szczegółowoUkłady punktów materialnych i zasada zachowania pędu.
Wykład z fzyk. Pot Posmykewcz 68 W Y K Ł A D VII Układy punktów matealnych zasada zachowana pędu. Do tej poy taktowaly cała take jak samochód, aketę, czy człoweka jako punkty matealne (cząstk) stosowaly
Bardziej szczegółowoXXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowo9. 1. KOŁO. Odcinki w okręgu i kole
9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień
Bardziej szczegółowoWykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
Bardziej szczegółowoOddziaływania fundamentalne
Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających
Bardziej szczegółowoθ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z
IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz
Bardziej szczegółowor śm równa się wypadkowej sile działającej na
Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak
Bardziej szczegółowoMechanika ruchu obrotowego
Mechanika uchu obotowego Fizyka I (Mechanika) Wykład VII: Ruch po okęgu Ruch w jednoodnym polu elektycznym i magnetycznym Pawa uchu w układzie obacajacym się Pojęcia podstawowe Układ współzędnych Służy
Bardziej szczegółowoSiły oporu prędkość graniczna w spadku swobodnym
FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych
Bardziej szczegółowoWykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak
D hab. ż. Władysław Atu Woźak Wykład FZYKA 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak stytut Fyk Poltechk Wocławskej http://www.f.pw.woc.pl/~woak/fyka.html D hab. ż. Władysław Atu Woźak ŚRODEK
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana
Bardziej szczegółowoGrzegorz Kornaś. Powtórka z fizyki
Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy
Bardziej szczegółowoKINEMATYCZNE WŁASNOW PRZEKŁADNI
KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej
Bardziej szczegółowoFizyka. Wykład 2. Mateusz Suchanek
Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,
Bardziej szczegółowo= = = A z powyższego: K
Janusz B. ępka Ruch absolutny względny X.7. System helocentyczny Janusza B. ępk. Zauważmy, że według teo geocentycznej oaz helocentycznej, odpowedno Zema lub Słońce są absolutne neuchome w osmose. Z waunku
Bardziej szczegółowoII.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Bardziej szczegółowocz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Bła stwna c. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-, pok. skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/ 8-- Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka Śodek as/ śodek cężkośc
Bardziej szczegółowoPodstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Bardziej szczegółowoOpis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
Bardziej szczegółowoSiła. Zasady dynamiki
Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,
Bardziej szczegółowoWykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowoWYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA
Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie
Bardziej szczegółowoOpracowanie pytań na egzamin Fizyka dla elektroników 1
Opacowane pytań na egzamn Fzyka dla elektonków 1 Powadzący: d hab nż. Gzegoz Haań (wesja okojona, po konsultacjach 1 Inecjalne nenecjalne układy odnesena 1.1 *** Inecjalny układ odnesena jego zwązek z
Bardziej szczegółowoWykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak
D hab. ż. Władysław Atu Woźak Wykład FIZYKA I 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak Kateda Optyk Fotok Wydał Podstawowych Poblemów Techk Poltechka Wocławska http://www.f.pw.woc.pl/~woak/fyka1.html
Bardziej szczegółowoWykład 5: Dynamika. dr inż. Zbigniew Szklarski
Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,
Bardziej szczegółowocz.2 dr inż. Zbigniew Szklarski
Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds
Bardziej szczegółowoPrawo Gaussa. Potencjał elektryczny.
Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla
Bardziej szczegółowoFizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1
Bardziej szczegółowoRuch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Bardziej szczegółowoKondensatory. Definicja pojemności przewodnika: C = q V. stosunek!adunku wprowadzonego na przewodnik do wytworzonego potencja!u.
Kondensatoy Defncja pojemnośc pzewodnka: stosunek!adunku wpowadzonego na pzewodnk do wytwozonego potencja!u. -6 - Jednostka: faad, F, µ F F, pf F Kondensato: uk!ad co najmnej dwóch pzewodnków, pzedzelonych
Bardziej szczegółowoMECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Bardziej szczegółowoI. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Bardziej szczegółowoPOLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął
POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego
Bardziej szczegółowodr inż. Zbigniew Szklarski
Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoNovosibirsk, Russia, September 2002
Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego
Bardziej szczegółowoPole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.
Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest
Bardziej szczegółowoPrędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Bardziej szczegółowoIndukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych
ndukcja eektomagnetyczna ndukcyjność Dgana w obwodach eektycznych Pawo ndukcj eektomagnetycznej Faadaya > d zewnętzne poe magnetyczne skeowane za płaszczyznę ysunku o watośc osnącej w funkcj czasu. ds
Bardziej szczegółowoZastosowanie zasad dynamiki Newtona.
Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.
Bardziej szczegółowoPodstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoGRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
Bardziej szczegółowoINDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.
INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.
Bardziej szczegółowoEnergia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana
Bardziej szczegółowoWarunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
Bardziej szczegółowoPędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
Bardziej szczegółowoelektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Bardziej szczegółowo10. Ruch płaski ciała sztywnego
0. Ruch płaski ciała sztywnego. Pędkość w uchu płaskim Metody wyznaczania pędkości w uchu płaskim y x / chwiowy śodek pędkości. naitycznie Dane:, Szukane: s / /. Na podstawie położenia chwiowego śodka
Bardziej szczegółowoWyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
Bardziej szczegółowoPRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Bardziej szczegółowoPRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA
PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na
Bardziej szczegółowoUkłady cząstek i bryła sztywna. Matematyka Stosowana
Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne
Bardziej szczegółowoDynamika bryły sztywnej
W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o. oet bewładośc Dyaka cała tywego uch łożoy cała tywego 3/4 L.. Jaoewc j j j j j
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Bardziej szczegółowocz. 1. dr inż. Zbigniew Szklarski
Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie
Bardziej szczegółowoVII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Bardziej szczegółowoBryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
Bardziej szczegółowo12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Bardziej szczegółowoSkładowe przedmiotu MECHANIKA I MECHATRONIKA. mechanika techniczna podstawy konstrukcji maszyn mechatronika
Składowe pzedmiotu MECHANIKA I MECHATRONIKA mechanika techniczna podstawy konstukcji maszyn mechatonika mechanika techniczna mechanika ogólna (teoetyczna): kinematyka (badanie uchu bez wnikania w jego
Bardziej szczegółowoFizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Bardziej szczegółowoFizyka dla Informatyki Stosowanej
Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady
Bardziej szczegółowoXXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza
Bardziej szczegółowoSKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE
Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski
Bardziej szczegółowoPRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r
PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda
Bardziej szczegółowodr inż. Zbigniew Szklarski
ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele
Bardziej szczegółowo