GAZY DOSKONAŁE I PÓŁDOSKONAŁE
|
|
- Artur Witek
- 7 lat temu
- Przeglądów:
Transkrypt
1 TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene bewględne Pa v objętość właścwa m 3 /g V v = = gde ρ - gęstość g/m 3 ρ m R ndywdualna stała gaowa g K T temperatura K. V objętość m 3 m masa g. p V = m R T gde: n lość mol mol (MR) unwersalna stała gaowa p V = n (MR) T gde: mol K p V& = m& R T gde: V & -strumeń objętośc m 3 /s m& - strumeń masy g/s m = n M gde M masa cąstecowa wąu g/mol Strumene masy objętośc Strumeń objętośc: V& = S w gde: S pole preroju m 2 w średna prędość m/s. Strumeń masy: m & = V & ρ = S w ρ Unwersalna stała gaowa: (MR)= 835 mol K ( MR) Indywdualna stała gaowa wąu: R = M g K Warun normalne: p n = 0325 Pa t n = 0 o C
2 Rotwory n Udał lomolowy (molowy): = pry cym n = n ora = gde: n = = n - lość mol danego sładna r-ru n - lość mol całego r-ru m Udał logramowy (masowy): g = pry cym m = m ora g = gde: m = = m - masa danego sładna r-ru m - masa całego r-ru V Udał objętoścowy: r = pry cym V = V ora r = gde: V = = p T V - objętość danego sładna r-ru V - objętość całego r-ru r = ZaleŜność mędy udałam masowym a molowym objętoścowym: M M g = = r gde: M astępca masa cąstecowa rotworu: M M M = ( M ) g = gde: g mol = M - masa molowa danego sładna r-ru = = Zastępca stała gaowa rotworu: R ( g R ) g K R - stała gaowa danego sładna r-ru = M gde: R ( MR) = ; M g K R M = 835 mol K Gęstość rotworu gaów: ρ = ( r ρ ) 3 = ρ - gęstość danego sładna r-ru Prawo Daltona: p = p r = p gde: p - cśnene cąstowe sładna r-ru p - cśnene bewględne całego r-ru = p = p g m gde: 2
3 PRACA ABSOLUTNA UśYTECZNA TECHNICZNA Praca absolutna (bewględna objętoścowa); gdy 0 2 Praca uŝytecna; gdy 0 gde: - cśnene otocena - praca ompresj otocena. Praca techncna - dla preman nelnowych - dla preman lnowych gde N- moc slna W Cała o stałym ceple właścwym CIEPŁO WŁAŚCIWE CIEPŁO PRZEMIANY Klogramowe cepło właścwe (logramowa właścwa pojemność ceplna) c lość cepła potrebna do ograna g cała o stopeń; Do ograna m logramów cała o t ( T) potreba cepła:. lub a taŝe lub gde: c p logramowe cepło właścwe pod stałym cśnenem c v logramowe cepło właścwe w stałej objętośc t temperatura C T temperatura K. c p c v = R; c p =(Mc p ):M Klomolowe cepło właścwe (lomolowa właścwa pojemność ceplna) (Mc) lość cepła potrebna do ograna mol cała o stopeń; Do ograna n lomol cała o t ( T) potreba cepła:. lub a taŝe lub gde: Mc p lomolowe cepło właścwe pod stałym cśnenem Mc v lomolowe cepło właścwe w stałej objętośc t temperatura C T temperatura K. 3
4 Cała o mennym ceple właścwym (Mc p ) (Mc v )= MR=835 Średne logramowe cepło właścwe gaów półdosonałych w arese temperatur od t do t 2 ( C): w arese temperatur od T do T 2 (K): (w ten sam sposób moŝna oblcyć arówno średne logramowe cepło właścwe w stałej objętośc c v ja średne logramowe cepło właścwe pry stałym cśnenu c p ). Średne lomolowe cepło właścwe gaów półdosonałych w arese temperatur od t do t 2 ( C): w arese temperatur od T do T 2 (K): (w ten sam sposób moŝna oblcyć arówno średne lomolowe cepło właścwe w stałej objętośc (Mc v ) ja średne lomolowe cepło właścwe pry stałym cśnenu (Mc p )). Do ograna m logramów cała o t ( T) potreba cepła: a taŝe lub lub lub lub = 835 Cepło właścwe rotworu gaów Klogramowe cepło właścwe rotworu gaów: lub = 835 g K gde: udały masowe sładnów rotworu. logramowe cepło właścwe sładna rotworu Klomolowe cepło właścwe rotworu gaów: mol K gde: udały molowe sładnów rotworu. lomolowe cepło właścwe sładna rotworu 4
5 Energa wewnętrna gde: m masa g u energa wewnętrna właścwa /g PIERWSZA ZASADA TERMODYNAMIKI U = m u Analogcne: U = n (Mu) Dla gaów dosonałych moŝna apsać aleŝnośc: u = c v T Stąd: (Mu) = (Mc v ) T U = m c v T = n (Mc v ) T Dla gaów półdosonałych analogcne: u = t lub u = T (Mu) = t lub (Mu) = T U = m t = n t lub U = m T = n T Perwsa asada termodynam DLA SYSTEMÓW ZAMKNIĘTYCH perwsa postać równana perwsej asady termodynam: Q = U + L -2 gde U- pryrost energ wewnętrnej U=U 2 -U Entalpa suma energ wewnętrnej energ pretłacana (pracy pretłacana) I = U + p V Entalpa właścwa (entalpa g cynna): = u + p v /g Entalpa gaów dosonałych ponewaŝ c v + R = c p = c p T = (c v + R) T (M) = (Mc p ) T. I = m c p T = n (Mc p ) T 5
6 Entalpa gaów półdosonałych = t lub = T = t lub = T (M) = t lub (M) = T I = m t = n t lub I = m T = n T Energa dopływająca do uładu lub odpływająca uładu wra e strumenem cynna (np. rurocągem) jest sumą entalp energ potencjalnej netycnej chemcnej cynna. eśl prędość cynna w<40 m/s ora wysoość h<00 m ne achod reacja chemcna to moŝna apsać: E d = I = m = n (M) Perwsa asada termodynam dla SYSTEMÓW OTWARTYCH druga postać równana perwsej asady termodynam blans masyny prepływowej: Q = I + L t -2 gde I- pryrost entalp I=I 2 -I PRZEMIANY ODWRACALNE GAZÓW DOSKONAŁYCH Premana obarycna p = const. Z prawa Gay-Lussaca: Praca bewględna: Praca techncna: 0 Cepło premany obarycnej (dla gaów dosonałych - o stałej pojemnośc ceplnej) wynos: 6
7 Premana ochorycna V = const. Prawo Charlesa: Praca bewględna: Praca techncna: 0 Cepło premany ochorycnej (dla gaów dosonałych o stałej pojemnośc ceplnej) wynos: Δ Premana otermcna t = const. Z prawa Boyle a Marotte a: Praca bewględna: Praca techncna: Cepło premany otermcnej (dla gaów dosonałych o stałej pojemnośc ceplnej) wynos: Δ gde Δ 0 bo Δ 0. Premana adabatycna (premana entropowa) Q -2 = 0. Premana entropowa jest premaną adabatycną gdyŝ jej ewnętrne cepło premany jest taŝe równe eru (Q=0). Dodatowo w prypadu entropy entropa premany jest nemenna Δ 0. Ne onaca to Ŝe aŝda adabata jest entropą! Równane Possona: gde to wyładn adabaty. Dla adabaty słusne są następujące aleŝnośc: 7
8 . Praca bewględna: Praca techncna: Premana poltropowa gde: - wyładn poltropy. Dla poltropy słusne są następujące aleŝnośc:. Praca bewględna: Praca techncna:. 8
9 Cepło premany poltropowej wynos:. PonewaŜ podcas premany poltropowej mena sę najcęścej objętość cśnene cynna symbole c (Mc) onacają cepło właścwe poltropy oblcane według następujących aleŝnośc:. Parametry pary nasyconej morej Stopeń suchośc pary nasyconej morej: m - lość pary nasyconej suchej g m - lość cecy (w punce pęcheryów) g m lość pary nasyconej morej g PARA WODNA gde Objętość właścwa pary nasyconej morej o stopnu suchośc x: v x = v + x (v v ) m 3 /g. Entalpa właścwa pary nasyconej morej o stopnu suchośc x: x = + x ( ) /g Dla wody o temp<50 C moŝna pryjąć Ŝe. Entropa właścwa pary nasyconej morej o stopnu suchośc x: s x = s + x (s s ) /(g K) Energa wewnętrna właścwa pary nasyconej morej o stopnu suchośc x: u x = u + x (u u ) u x = x p v x. /g 9
10 PRZEMIANY CHARAKTERYSTYCZNE PARY WODNE Premana obarycna p=const. Praca absolutna premany Praca techncna premany 0 Cepło premany gde: atualne równeŝ dla preman ponŝej Premana ochorycna v=const. Praca absolutna premany =0 Praca techncna premany Cepło premany Premana otermcna t=const. Cepło premany Premana adabatycna odwracalna = premana entropowa Q -2 =0 s=const. Praca absolutna premany Praca techncna premany Premana adabatycna neodwracalna Q -2 =0. Praca absolutna premany Praca techncna premany Sprawność wewnętrna masyny prepływowej. 0
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Podstawy termodynamiki
Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Wykład Turbina parowa kondensacyjna
Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW
Podstawowe równania podsumowanie (1) Podstawowe równania podsumowanie (2) Podstawowe równania podsumowanie (3)
odstawowe równana podsumowane () u = q + w f = u Ts du = dq + dw df = du Tds sdt dla procesu odwracalnego : Tds = dq zatem : df = du dq sdt a z ole (dla procesu odwracalnego) : du dq = dw a wtedy : df
α i = n i /n β i = V i /V α i = β i γ i = m i /m
Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej
Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.
Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
V. TERMODYNAMIKA KLASYCZNA
46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną
F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają
GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)
Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Parametry stanu w przemianie izobarycznej zmieniają się według zależności
Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty
termodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ
Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
MODELOWANIE UKŁADU ABSORPCYJNO-DYFUZYJNEGO (część I)
Dr nŝ Janus Echler Dr nŝ Jacek Kaspersk 1 Zakład Chłodnctwa Krogenk Instytut Technk Ceplnej echank Płynów Poltechnka Wrocławska ODELOWANIE UKŁADU ABSORPCYJNO-DYFUZYJNEGO (cęść I) etoda dentyfkacj obegu
Zmiana entropii w przemianach odwracalnych
Wykład 4 Zmana entrop w przemanach odwracalnych: przemany obegu Carnota, spręŝane gazu półdoskonałego ze schładzanem, zobaryczne wytwarzane przegrzewane pary techncznej rzemany zentropowe gazu doskonałego
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
WŁAŚCIWOŚCI GAZÓW DOSKONAŁYCH I PÓŁDOSKONAŁYCH
Polska Probley Nauk Stosowanych, 016, To 4, s 095 106 Szczecn Prof WSTE dr hab nż Benedykt LITKE Wyższa Szkoła Technczno-Ekonoczna w Szczecne, Wydzał Transportu Saochodowego Hgher School of Technology
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Fizyka 14. Janusz Andrzejewski
Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)
Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Opracowała: Natalia Strzęciwilk nr albumu 127633 IM-M sem.01 Gdańsk 2013 Spis treści 1. Obiegi gazowe 2. Obieg Ackereta-Kellera 2.1. Podstawy
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość
5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077
. Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla
Wykład 8. Silnik Stirlinga (R. Stirling, 1816)
Wykład 8 Maszyny ceplne c.d. Rozkład Maxwella -wstęp Entalpa Entalpa reakcj chemcznych Entalpa przeman azowych Procesy odwracalne neodwracalne Entropa W. Domnk Wydzał Fzyk UW Termodynamka 018/019 1/6 Slnk
Doświadczenie B O Y L E
Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Wykład 7. Podstawy termodynamiki i kinetyki procesowej - wykład 7. Anna Ptaszek. 21 maja Katedra Inżynierii i Aparatury Przemysłu Spożywczego
Wykład 7 knetyk knetyk procesowej - Katedra Inżyner Aparatury Przemysłu Spożywczego 21 maja 2018 1 / 31 Układ weloskładnkowy dwufazowy knetyk P woda 1 atm lód woda cek a woda + substancja nelotna para
KONSPEKT WYKŁADU. nt. MECHANIKA OŚRODKÓW CIĄGŁYCH. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. MECHANIKA OŚRODKÓW CIĄGŁYCH Potr Konderla paźdzernk 2014 2 SPIS TREŚCI Oznaczena stosowane w konspekce...
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
Wykład 10 Teoria kinetyczna i termodynamika
Wykład 0 Teora knetyczna termodynamka Prawa gazów doskonałych Z dośwadczeń wynka, że przy dostateczne małych gęstoścach, wszystke gazy, nezależne od składu chemcznego wykazują podobne zachowana: w stałej
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Podstawy termodynamiki Rok akademicki: 2015/2016 Kod: MIC-1-206-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność: - Poziom studiów:
2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie
RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
Płetwonurek KDP/CMAS ** (P2)
Płetwonurek KDP/CMAS ** (P2) WWW.CMAS.PL Płetwonurek KDP/CMAS ** (P2) KDP CMAS 2013 1 Zagadnienia Ciśnienie Zależność pomiędzy ciśnieniem, objętością i temperaturą Ciśnienie w mieszaninach gazów Rozpuszczalność
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Energetyka odnawialna i nieodnawialna
Energetyka odnawialna i nieodnawialna Repetytorium Podstawy termodynamiczne Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz gar@imp. imp.gda.pl, 601-63 63-22-84 Materiały y uzupełniaj niające:
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
Termodynamika Termodynamika
Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się
CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 138 WYKŁAD - STAN GAZOWY i CHEMIA GAZÓW kinetyczna teoria gazów ogromna liczba małych cząsteczek, doskonale
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK
Wykład 4. Gazy.. Gaz doskonały, półdoskonały i rzeczywisty.. Równanie stanu gazu doskonałego; uniwersalna stała gazowa.3. RównowaŜne sformułowania równania stanu gazu doskonałego; stała gazowa.4. Odstępstwa
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.
Wykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Ciśnienie i temperatura model mikroskopowy
Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy
Inżynieria Chemiczna Transport masy i ciepła
Inżynieria Chemiczna Transport masy i ciepła dr hab. inż. Agnieszka Gubernat gubernat@agh.edu.pl p.1.21; budynek B8 Wstęp Pierwsza zasada termodynamiki, przemiany termodynamiczne, praca techniczna PLAN
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
CHEMIA FIZYCZNA ZTiM
CHEMIA FIZYCZNA ZTiM Semestr zimowy 2016/2017 Dr hab. inż. Dorota Warmińska 1. Chemia fizyczna. Termodynamika. Podstawowe pojęcia stosowane w termodynamice. Układ i otoczenie. Przegroda adiabatyczna i
Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak
Państwowa Wyższa Szkoła Zawodowa w Koninie Janusz Walczak Te r m o d y n a m i k a t e c h n i c z n a Konin 2008 Tytuł Termodynamika techniczna Autor Janusz Walczak Recenzja naukowa dr hab. Janusz Wojtkowiak
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Termodynamika Część 2
Termodynamika Część 2 Równanie stanu Równanie stanu gazu doskonałego Równania stanu gazów rzeczywistych rozwinięcie wirialne równanie van der Waalsa hipoteza odpowiedniości stanów inne równania stanu Równanie
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Kiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. Termodynamika dziedzina termodynamiki
Wykład 2. Anna Ptaszek. 7 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 2. Anna Ptaszek 1 / 1
Wykład 2 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 7 października 2015 1 / 1 Zjawiska koligatywne Rozpuszczenie w wodzie substancji nielotnej powoduje obniżenie prężności pary nasyconej P woda
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO
8.STANY SKUPIENIA. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu)
8.STANY SKUPIENIA Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) Trzy stany skupienia Podstawowe stany skupienia materii (w temp. otoczenia): gazy
3.1. Równowagi fazowe układach jednoskładnikowych 3.2. Termodynamika równowag fazowych 3.3. Równowagi fazowe układach dwuskładnikowych 3.4.
Równowagi fazowe w układach jedno- i wieloskładnikowych jedno- lub wielofazowych 3.1. Równowagi fazowe układach jednoskładnikowych 3.2. Termodynamika równowag fazowych 3.3. Równowagi fazowe układach dwuskładnikowych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Technika cieplna Thermal Technology Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom przedmiotu: obieralny, moduł 5.5 I stopnia Rodzaj zajęć: Liczba godzin/tydzień: wykład, ćwiczenia
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
TERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
Gazy. - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings
Gazy - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings Ciśnienie p = F S 1 atm = 101325 Pa 1 atm = 760 mm Hg = 760 Torr N 2 m = kg m 2 s 2 m =
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna
W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej
Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.
Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język
4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa
1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające
Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Prąd elektryczny U R I =
Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój
Gazy. Ciśnienie F S. p = 1 atm = Pa 1 atm = 760 mm Hg = 760 Torr. - Uniformly fills any container. - Mixes completely with any other gas
Gazy - Uniformly fills any container - Mixes completely with any other gas - Exerts pressure on its surroundings Ciśnienie p = F S 1 atm = 10135 Pa 1 atm = 760 mm Hg = 760 Torr N = m kg m s m = kg s m
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze