Teoria Względności. Czarne Dziury

Wielkość: px
Rozpocząć pokaz od strony:

Download "Teoria Względności. Czarne Dziury"

Transkrypt

1 Teoia Względności Zbigniew Osiak Czane Dziuy 11

2

3 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje)

4 Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie pawa zastzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabonione bez pisemnej zgody autoa tekstu i autoki ilustacji. Potet autoa zamieszczony na okładkach pzedniej i tylnej Rafał Pudło Wydawnictwo: Self Publishg ISBN: zbigniew.osiak@live.com

5 Wykład 11 TEORIA WZGLĘD OŚCI Czane Dziuy d Zbigniew Osiak Potety wykonała Małgozata Osiak

6 Plan wykładu 06 Ojcowie gawitacji Pawo gawitacji Newtona 10 Pawo gawitacji Gaussa 11 Równanie pola i ównania uchu Poissona 1 Dwupotencjalność stacjonanego pola gawitacyjnego 13 Ogólna Teoia Względności I powstała Ogólna Teoia Względności (OTW) 19 Podstawowe postulaty OTW 0 OTW i gawitacja 1 Równania pola w OTW Równania uchu cząstki póbnej w OTW 3 Rozwiązanie zewnętzne Schwazschilda 5 Czane dziuy Masy źódłowe 7 Czana dziua 8

7 Plan wykładu 07 Tafna nazwa 9 Pomienie Schwazschilda óżnych obiektów 30 Jak powstają czane dziuy? 31 Antygawitacja Antygawitacja 33 Czana dziua z otoczką antygawitacyjną 34 Poponowane doświadczenie 36 Potony jako czane dziuy Poton jako czana dziua z otoczką antygawitacyjną 38 Potony związane gawitacyjnie 39 Obym nie miał acji 40 Sukcesy i poażki Teoii Wielkiego Wybuchu Kosmologiczne ozwiązanie Fiedmana 4 Wielki Wybuch 43

8 Plan wykładu 08 Paadoks fotometyczny Olbesa 44 Obsewacje i pawo Hubble a 45 Mikofalowe pomieniowanie tła 46 Satelita COBE 47 Pzyspieszający Wszechświat 49 Sukcesy i poażki Teoii Wielkiego Wybuchu 51 Wszechświat jako czana dziua Paadoks fotonowy 53 Czy fotony maja pamięć? 55 Jak zdefiować poczewienienie? 57 Nasz Wszechświat jako czana dziua z otoczką antygawitacyjną 58 Równania Twócy achunku tensoowego 63 Tenso kzywizny Ricciego i symbole Chistoffela 65 Kontawaiantny tenso metyczny 66

9 Ojcowie gawitacji 09

10 Pawo gawitacji ewtona 10 Watość pzyspieszenia gawitacyjnego swobodnej cząstki na zewnątz źódłowej masy, któą stanowi jednoodna kula, maleje odwotnie do kwadatu odległości od centum tej kuli. Isaac Newton ( )

11 Pawo gawitacji Gaussa 11 Z pawa Gaussa wynika, że wewnątz jednoodnej kuli watość pzyspieszenia gawitacyjnego ośnie liowo z odległością od centum, gdzie jest ówna zeu. Cal F. Gauss ( )

12 Równanie pola i ównania uchu Poissona 1 W teoii Poissona pole gawitacyjne schaakteyzowane jest pzez podanie w każdym punkcie pzestzeni jednej wielkości nazywanej potencjałem gawitacyjnym. Znając potencjały gawitacyjne, można wyznaczyć pzyspieszenie swobodnej cząstki. Siméon Poisson ( ) ϕ x + ϕ y + ϕ z = 4πGρ Równanie pola d dt x µ = ϕ x µ Równania uchu

13 Dwupotencjalność stacjonanego pola gawitacyjnego 13 Z fizyki klasycznej wiadomo, że bezwzględna watość pzyspieszenia gawitacyjnego w centum jednoodnej kuli o stałej gęstości jest ówna zeu, waz ze wzostem odległości od śodka ośnie liowo, osiągając maksymalną watości na powiezchni kuli, pzy dalszym wzoście odległości maleje odwotnie kwadatowo. Aby w amach OTW uzyskać analogiczny wynik, należy zauważyć, że stacjonane pole gawitacyjne jest polem dwupotencjalnym. W fizyce klasycznej wygodnie jest posługiwać się tylko jednym potencjałem, znikającym nieskończenie daleko od centum źódłowej masy. Z. Osiak: Antygawitacja. Self Publishg (01)

14 Dwupotencjalność stacjonanego pola gawitacyjnego 14 Równanie Poissona dla potencjału wewnątz źódłowej masy óżni się od klasycznego ównania Poissona tylko znakiem pawej stony, dla potencjału na zewnątz źódłowej masy nie tzeba wpowadzać żadnej popawki. ϕ x + ϕ y + ϕ z = 4πGρ, 0 < R, lim 0 ϕ = 0 ϕ x + ϕ y + ϕ z = 0, R, lim ϕ = 0 Z. Osiak: Antygawitacja. Self Publishg (01)

15 a a a ~ k Dwupotencjalność stacjonanego pola gawitacyjnego ~ = gadϕ = kgadϕ, ~ = gadϕ = kgadϕ 4 = π G ρ, ϕ = π G ρ, a na zewnątz źódlowych mas = 1 wewnątz źódlowych mas 0, < R, R, lim ϕ 0 lim ϕ = = = 0 0 GM, ϕ = GM 15 Na powiezchni kuli mamy ϕ ϕ = GM R, a a = 0 Z. Osiak: Antygawitacja. Self Publishg (01)

16 Dwupotencjalność stacjonanego pola gawitacyjnego 16 ϕ ϕ GM = 3 R GM =,, 0 R, < R, lim ϕ lim ϕ 0 = 0 = 0 ϕ 0 ϕ R ϕ GM R GM R Z. Osiak: Antygawitacja. Self Publishg (01)

17 Dwupotencjalność stacjonanego pola gawitacyjnego 17 a a a GM = 3 R GM,, 0 R < R R a a Z. Osiak: Antygawitacja. Self Publishg (01)

18 Ogólna Teoia Względności 18

19 I powstała Ogólna Teoia Względności (OTW) 19 5 listopada 1915 na posiedzeniu Kólewskiej Puskiej Akademii Nauk Albet Este pzedstawił pacę Równania pola gawitacyjnego. Kończyła ona twający osiem lat etap twozenia Ogólnej Teoii Względności. Albet Este ( ) A. Este: Die Feldgleichungen de Gavitation. Sitzungsbeichte de Königlich Peussischen Akademie de Wissenschaften, 48 (1915) Równania pola gawitacyjnego.

20 Podstawowe postulaty OTW 0 Postulat 1 (zasada stałości maksymalnej watości pędkości) Maksymalna watość pędkości ozchodzenia się sygnałów jest taka sama we wszystkich układach odniesienia. Postulat (ogólna zasada względności) Deficje wielkości fizycznych oaz pawa (ównania) fizyki można tak sfomułować, aby ich ogólna postać była taka sama we wszystkich układach odniesienia. Postulat 3 (ównania metyki, ównania pola gawitacyjnego) Metyka czasopzestzeni jest zależna od gęstości enegii wszelakiej postaci (w tym enegii ównoważnej masie). Składowe tensoa metycznego są ozwiązaniami ównań pola. Postulat 4 (zasada ównoważności) Masa ecyjna jest ówna masie gawitacyjnej.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Prawo powszechnego ciążenia Newtona

Prawo powszechnego ciążenia Newtona Pawo powszechnego ciążenia Newtona m M FmM Mm =G 2 Mm FMm = G 2 Stała gawitacji G = 6.67 10 11 2 Nm 2 kg Wielkość siły gawitacji z jaką pzyciągają się wzajemnie ciała na Ziemi M = 100kg N M = Mg N m =

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

Energia w geometrii Schwarzshilda

Energia w geometrii Schwarzshilda Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Plan wykładu. Rodzaje pól

Plan wykładu. Rodzaje pól Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał

Bardziej szczegółowo

cz.2 dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności (wybane zagadnienia) Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 7 M. Pzybycień (WFiIS AGH) Szczególna Teoia Względności

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

Wykłady z Fizyki. Grawitacja

Wykłady z Fizyki. Grawitacja Wykłady z Fizyki 04 Zbigniew Osiak Grawitacja OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 10: Gawitacja d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Siły centalne Dla oddziaływań gawitacyjnych C Gm 1 m C ˆ C F F 3 C C Dla oddziaływań elektostatycznych

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Moment pędu w geometrii Schwarzshilda

Moment pędu w geometrii Schwarzshilda Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Wykłady z Fizyki. Magnetyzm

Wykłady z Fizyki. Magnetyzm Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

WPROWADZENIE. Czym jest fizyka?

WPROWADZENIE. Czym jest fizyka? WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych

Bardziej szczegółowo

Czarnodziurowy Wszechświat a ziemska grawitacja

Czarnodziurowy Wszechświat a ziemska grawitacja biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A.

LITERATURA Resnick R., Holliday O., Acosta V., Cowan C. L., Graham B. J., Wróblewski A. K., Zakrzewski J. A., Kleszczewski Z., Zastawny A. LITERATURA. Resnick R., Holliday O., Fizyka, Tom i, lub nowe wydanie 5-tomowe. Acosta V., Cowan C. L., Gaham B. J., Podstawy Fizyki Współczesnej, 98,PWN. 3. Wóblewski A. K., Zakzewski J. A., Wstęp Do Fizyki,

Bardziej szczegółowo

Siły centralne, grawitacja (I)

Siły centralne, grawitacja (I) Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,

Bardziej szczegółowo

Zasady dynamiki ruchu obrotowego

Zasady dynamiki ruchu obrotowego DYNAMIKA (cz.) Dynamika układu punktów Śodek masy i uch śodka masy Dynamika były sztywnej Moment bezwładności, siły i pędu Zasada zachowania momentu pędu Pawo Steinea Zasady dynamiki uchu obotowego Politechnika

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

ver grawitacja

ver grawitacja ve-18.10.07 gawitacja początki Galileusz 1564-164 układ słoneczny http://www.aachnoid.co/gavitation/sall.htl pawa Keplea 1. obity planet kążących wokół słońca są elipsai ze słońce w ognisku Johannes Keple

Bardziej szczegółowo

Teoria Względności. Kosmologia Relatywistyczna

Teoria Względności. Kosmologia Relatywistyczna Teoria Względności Zbigniew Osiak Kosmologia Relatywistyczna 10 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Kosmologia Relatywistyczna Małgorzata Osiak (Ilustracje) Copyright by Zbigniew Osiak (text) and

Bardziej szczegółowo

Fizyka 9. Janusz Andrzejewski

Fizyka 9. Janusz Andrzejewski Fizyka 9 Janusz Andzejewski R K Księżyc kążący wokół iei (Rozważania Newtona) Pzyśpieszenie dośodkowe księżyca 4πRK ak = T Wstawiając dane dla obity księżyca: R K = 3.86 10 T = 7. 3dnia 5 k R 6300 = 386000

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Fizyka mało znana. Słynne paradoksy fizyki

Fizyka mało znana. Słynne paradoksy fizyki Fizyka mało znana Słynne Zbigniew Osiak paradoksy fizyki 08 OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana

Bardziej szczegółowo

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1. Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej

Bardziej szczegółowo

cz.1 dr inż. Zbigniew Szklarski

cz.1 dr inż. Zbigniew Szklarski ykład : Gawitacja cz. d inż. Zbiniew Szklaski szkla@ah.edu.l htt://laye.uci.ah.edu.l/z.szklaski/ Doa do awa owszechneo ciążenia Ruch obitalny lanet wokół Słońca jak i dlaczeo? Reulane, wieloletnie omiay

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

Wykłady z Fizyki. Hydromechanika

Wykłady z Fizyki. Hydromechanika Wykłady z Fizyki 03 Zbigniew Osiak Hydromechanika OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K

Bardziej szczegółowo

Wykłady z Fizyki. Ciało Stałe

Wykłady z Fizyki. Ciało Stałe Wykłady z Fizyki 11 Zbigniew Osiak Ciało Stałe OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Teoria Względności. Podstawy

Teoria Względności. Podstawy Teoria Względności Zbigniew Osiak Podstawy 01 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Podstawy Małgorzata Osiak (Ilustracje) Copyright by Zbigniew Osiak (text) and Małgorzata Osiak (illustrations) Wszelkie

Bardziej szczegółowo

Zjawisko indukcji. Magnetyzm materii.

Zjawisko indukcji. Magnetyzm materii. Zjawisko indukcji. Magnetyzm mateii. Wykład 6 Wocław Univesity of Technology -04-0 Dwa symetyczne pzypadki PĘTLA Z PĄDEM MOMENT SIŁY + + POLE MAGNETYCZNE POLE MAGNETYCZNE P A W O I N D U K C J I MOMENT

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Czarnodziurowy Wszechświat a dwu-potencjalność pola grawitacyjnego

Czarnodziurowy Wszechświat a dwu-potencjalność pola grawitacyjnego Zbiniew Osik Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo.07.08 Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo Zbiniew Osik E-mil: zbiniew.osik@mil.om http://oid.o/0000-000-5007-06x http://vix.o/utho/zbiniew_osik

Bardziej szczegółowo

Grawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r

Grawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r Wykład z fizyki Piot Posykiewicz 113 Ponieważ, ważne są tylko ziany enegii potencjalnej, ożey pzyjąć, że enegia potencjalna jest ówna zeo w dowolny położeniu. Powiezchnia iei oże być odpowiedni wyboe w

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO Wykład 8 lato 2015/16 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia

Bardziej szczegółowo

KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

KOOF Szczecin:   Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady

Bardziej szczegółowo

Wykłady z Fizyki. Teoria Względności

Wykłady z Fizyki. Teoria Względności Wykłady z Fizyki 14 Zbigniew Osiak Teoria Względności OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 01 1 Definicja wektoa indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakzywia to uchu ładunku

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,

XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha, XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej

Atom wodoru w mechanice kwantowej Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

Fizyka mało znana. Zasady zachowania w fizyce

Fizyka mało znana. Zasady zachowania w fizyce Fizyka mało znana Zasady Zbigniew Osiak zachowania w fizyce 09 OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW

E4. BADANIE POLA ELEKTRYCZNEGO W POBLIŻU NAŁADOWANYCH PRZEWODNIKÓW 4. BADANI POLA LKTRYCZNGO W POBLIŻU NAŁADOWANYCH PRZWODNIKÓW tekst opacował: Maek Pękała Od oku 1785 pawo Coulomba opisuje posty pzypadek siły oddziaływania dwóch punktowych ładunków elektycznych, któy

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 8 gudnia KOLOKWIUM W pzyszłym tygodniu więcej infomacji o pytaniach i tym jak pzepowadzimy te kolokwium 2 Moment bezwładności Moment bezwładności masy punktowej m pouszającej się

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1

Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1 6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,

Bardziej szczegółowo

XI. RÓWNOWAGA I SPRĘŻYSTOŚĆ

XI. RÓWNOWAGA I SPRĘŻYSTOŚĆ XI. RÓWNOWAGA I SPRĘŻYSTOŚĆ 11.1. Równowaga Ciało sztywne pozostające w spoczynku jest w ównowadze statycznej. Jak wiemy, uch postępowy ciała opisuje duga zasada dynamiki Newtona, któą za pomocą pędu ciała

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018

Geodezja fizyczna. Siła grawitacji. Potencjał grawitacyjny Ziemi. Modele geopotencjału. Dr inż. Liliana Bujkiewicz. 23 października 2018 Geodezja fizyczna Siła gawitacji. Potencjał gawitacyjny iemi. Modele geopotencjału. D inż. Liliana Bujkiewicz 23 paździenika 2018 D inż. Liliana Bujkiewicz Geodezja fizyczna 23 paździenika 2018 1 / 24

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Enegetyczny Podstawy elektotechniki Pof. d hab. inż. Juliusz B. Gajewski, pof. zw. PW Wybzeże S. Wyspiańskiego 7, 5-37 Wocław Bud. A4 Staa kotłownia, pokój 359 Tel.: 7 3 3 Fax: 7 38

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Wykłady z Fizyki. Optyka

Wykłady z Fizyki. Optyka Wykłady z Fizyki 09 Optyka Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo