m q κ (11.1) q ω (11.2) ω =,

Wielkość: px
Rozpocząć pokaz od strony:

Download "m q κ (11.1) q ω (11.2) ω =,"

Transkrypt

1 OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU Rys.. m masa[ kg] pzemieszczenie w czasie Pzypuśćmy, że mamy układ jak na ysunku obok (ys..). Zgodnie z zasadą d Aembeta ównanie ównowagi można zapisać: gdzie:.. () t + () t = 0 m κ (.).. κ =, m () t + () t = 0 (.) d = dt N κ sztywność podpoy m. Rozwiązaniem jest funkcja () t = s sin t + c cost () t = Asin ( t + ϕ), pzy czym kąt ϕ-to kąt fazowy. Stałe A, ϕ wyznaczymy z dwóch waunków początkowych: np... i : 0 ) t = 0 () 0 = a. d dt 0 ) t = 0 () 0 = = 0 t= 0 Rys.. Z waunków tych otzymujemy: a = Asin π = ( 0 + ϕ) = Asinϕ Asin = a A a

2 d π = Acos( t + ϕ) 0 = A cos( 0 + ϕ) cosϕ = 0 ϕ = dt Zatem da waunków początkowych j.w otzymujemy pełne ozwiązanie postaci: π = (.) () t asin t + = a cost gdzie: a -ampituda dgań, to max. watość pzemieszczenia(wychyenia) w stosunku do położenia ównowagi, -to częstość kołowa dgań własnych (zakładamy bak czynników zabuzających, czyi nie występuje tłumienie) [ d s], jest cechą indywiduaną każdego ciała (Jest stała!) Uwaga! Nie ma związku między ampitudą a częstością kołową! Zgodnie z ozwiązaniem (wzó.) nasza kuka powóci do swego położenia po czasie odpowiadającym π. Podstawmy tą watość do naszego ozwiązania: π () t = a cos( t + π ) = cos t + = cos[ ( t + T )] gdzie T = π to okes dgań, czyi czas dzieący dwa identyczne stany ozpatywanego ciała (łatwiej można to sobie wyobazić patząc na ysunek.). Zadanie Wyznaczyć częstość kołową eementu. Powiedzmy, że mamy układ jak na ysunku (ys..) z jednym stopniem swobody. Zakładamy, że masa beki jest znikomo mała w stosunku do nałożonej masy (powstały w ten sposób błąd będzie badzo mały i nieistotny da daszych ozważań). Częstość kołowa wyażana jest wzoem: κ = (.4) m

3 Rys.. Sztywność beki wyznaczymy kozystając z pacy wituanej. W miejscu masy m pzykładamy taką siłę P, któa spowoduje jednostkowe ugięcie beki (ys..b) stąd iδ ówne będzie. Wykonujemy wykesy momentów od zadanej siły P i siły jedynkowej (ys..c i d)otzymując: M M P δ = ds = P = EI EI EI Pzyównując otzymaną watość do jedynki: P EI EI = P = czyi κ = stąd szukana częstość kołowa wynosi: EI EI = (.5) m Zajmijmy się teaz beką swobodnie podpatą, któej masę spowadzimy do masy skupionej umieszczonej w śodku jej ozpiętości (ys..4). Sposób postępowania jest anaogiczny jak da beki z pzykładu piewszego. Wykonujemy wykesy momentów od zadanej siły P i siły jedynkowej.

4 Rys..4 M M P δ = ds = EI EI 4 ponieważ : P = P = czyi wynosi: 4 κ = P = stąd szukana częstość kołowa pzy czym = (.6) m m = ρ A (A-poe pzekoju popzecznego beki)... Dgania własne, tłumione. Tłumienie dgań jest wynikiem działania sił opou oznaczanych jako R. Siły te działają w uchu zwanym Voigt. Zakładany w nim tłumienie ekkie (wiskotyczne) popocjonane do pędkości uch, co zapisujemy: R ~`c (

5 Na ysunku (ys..5) widzimy ciało o masie m dgające swobodnie (bez tłumienia) i podczas tłumienia dgań. a)dgania własne-układ o jednym stopniu swobody b)dgania własne tłumione Rys..5 Równanie uch z uwzgędnieniem tłumienia pzyjmuje postać: gdzie c -stała tłumienia pzy wpowadzeniu zmiennej m ( + c ( + κ ( = 0 (.7) ρ = c m ównanie pzechodzi do postaci: ( + ρ ( + ( = 0 (.8) ρ współczynnik tłumienia dgań. t Rozwiązaniem ównania uchu (wzó.8) będzie funkcja postaci: ( = Ae. Podstawiając ją do ównania otzymamy ównanie chaakteystyczne postaci: + ρ + = 0 (.9) Rozwiązując je możemy otzymać tzy pzypadki: < 0 = 4ρ 4 = 4( ρ ) > 0 = 0 Rozważamy małe tłumienia ρ < Możiwe są dwa ozwiązania: i ρ Rozwiązującą funkcją jest funkcja postaci: ρt ( = Ae sin( t + ϕ) co jest ównoważne ozwiązaniu: + i ρ (.0) ρt = e sin( c cost + c sin ) (.) ( t

6 Wykes (ys..6) poniżej obazuje funkcję ozwiązującą (wzó.0): Rys..5 gdzie: T okes dgań własnych tłumionych wynoszący: π T = a = ρ Miaą tłumienia jest to z jaką szybkością następuje edukcja ampitudy, czyi eacja między dwiema koejnymi ampitudami podobnych stanów. I tak: π i T = +.Podstawiając do funkcji ozwiązującej (.0) otzymujemy:] i ρ ( t+ T ) i+ Ae pzy założeniu, że: sin( t + e) = = ρt Ae pzy czym i λ = n + i = ρ T Sine tłumienie ρ > Możiwe są dwa ozwiązania: = e = e i+ ρt λ i i ogaytmiczny dekement mienia. ρ Funkcja ozwiązująca pzyjmuje postać: + ρ (.) ρt = e ( c ch + c sh ) (.) ( t

7 gdzie: = ρ W YKŁ ADY Z MECHANIKI BUDOWLI W tym pzypadku wykes funkcji ozwiązującej wygąda następująco (ys..6): Rys..6 W tzecim ostatnim pzypadku gdy ρ = funkcja ozwiązująca jest postaci: t = e ρ ( c t + ) (.4) ( c a jej wykes jest taki jak pzy sinym tłumieniu(ys..6).

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.

1. SZCZEGÓLNE PRZYPADKI ŁUKÓW. Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak

Bardziej szczegółowo

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2) Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie

Bardziej szczegółowo

MECHANIKA BUDOWLI 11

MECHANIKA BUDOWLI 11 Oga Kopacz, Adam Łodygowski, Wojciech awłowski, Michał łotkowiak, Krzysztof Tymper Konsutacje naukowe: prof. dr hab. JERZY RAKOWSKI oznań / MECHANIKA BUDOWLI rzykład iczbowy: Dana beka, po której porusza

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH Politecnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Kateda Samolotów i Silników Lotniczyc Pomoce dydaktyczne Wytzymałość Mateiałów CHRKTERYSTYKI GEOMETRYCZNE FIGUR PŁSKICH Łukasz Święc Rzeszów, 18

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

LABORATORIUM WIBROAKUSTYKI MASZYN. Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów

LABORATORIUM WIBROAKUSTYKI MASZYN. Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów LABORAORIUM WIBROAKUSYKI MASZYN Wydział Budowy Maszyn i Zaządzania Instytut Mechaniki Stosowanej Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n WYZNACZANIE PARAMERÓW DYNAMICZNYCH UKŁADÓW metodą

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha,

XXI OLIMPIADA FIZYCZNA ( ). Stopień III, zadanie teoretyczne T1. Źródło: XXI i XXII OLIMPIADA FIZYCZNA, WSiP, Warszawa 1975 Andrzej Szymacha, XXI OLIMPIADA FIZYCZNA (97-97). Stopień III zadanie teoetyczne. Źódło: XXI i XXII OLIMPIADA FIZYCZNA WSiP Waszawa 975 Auto: Nazwa zadania: Działy: Słowa kluczowe: Andzej Szyacha Dwa ciała i spężynka Dynaika

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1) Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

BADANIE DYNAMICZNEGO TŁUMIKA DRGA

BADANIE DYNAMICZNEGO TŁUMIKA DRGA Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne

ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne Politechnika Waszawska Wydział Fizyki Laboatoium Fizyki I Płd. Maek Kowalski ELEKTROMAGNETYZNE RGANIA WYMUSZONE W OBWOZIE RL. Podstawy fizyczne gania są zjawiskiem powszechnie występującym w pzyodzie i

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p

Bardziej szczegółowo

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego.

UTRATA STATECZNOŚCI. O charakterze układu decyduje wielkośćobciążenia. powrót do pierwotnego położenia. stabilnego do stanu niestabilnego. Metody obiczeniowe w biomechanice UTRATA STATECZNOŚCI STATECZNOŚĆ odpornośćna małe zaburzenia. Układ stabiny po małym odchyeniu od stanu równowagi powrót do pierwotnego położenia. Układ niestabiny po małym

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika

Bardziej szczegółowo

Moment pędu w geometrii Schwarzshilda

Moment pędu w geometrii Schwarzshilda Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY

5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Równania Lagrange a II r.

Równania Lagrange a II r. Mechania Analityczna i Dgania Równania Lagange a II. pzyłay Równania Lagange a II. pzyłay mg inż. Sebastian Pauła Aaemia Góniczo-Hutnicza im. Stanisława Staszica w Kaowie Wyział Inżynieii Mechanicznej

Bardziej szczegółowo

KOOF Szczecin: Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

KOOF Szczecin:   Komitet Główny Olimpiady Fizycznej. Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. LVII OLIMPIADA FIZYCZNA (007/008). Stopień III, zadanie doświadczalne D Źódło: Auto: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andzej Wysmołek Komitet Główny Olimpiady

Bardziej szczegółowo

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło 07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora. DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

Rama płaska metoda elementów skończonych.

Rama płaska metoda elementów skończonych. Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fizyka dla Infomatyki Stosowanej Jacek Golak Semest zimowy 06/07 Wykład n 3 Na popzednim wykładzie poznaliśmy pawa uchu i wiemy, jak opisać uch punktu mateialnego w inecjalnym układzie odniesienia. Zasady

Bardziej szczegółowo

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I

Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

Zasada prac przygotowanych

Zasada prac przygotowanych 1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo