Atom wodoru eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.
|
|
- Radosław Kołodziejczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),...
2 Atom wodou We współędnch sfecnch: metoda odielania miennch (e wględu na smetię poblemu): Cęść ależną od oa cęść ależną od kątów pównujem do stałej.
3 l 0,, 2, 3,.. -l, -l+, -l+2.< m <.l-2, l-, l Zakładając dostajem jako owiąanie cęści kątowej tw. hamoniki sfecne. obital Y l m Hamonika sfecna ( θ, s p 0 p p - d 0 d d - d 2 d -2 Y 0 Y 0 0 ( θ, 2 π ( θ, 3 cosθ 4π 3 iϕ Y ( θ, - sinθ e 8π 3 ϕ Y ( θ, sinθ e i - 8π Y0 ( θ, cos θ 4π Y 2 ( θ, - sinθ cosθ e 2 2π 5 Y 2 ( - θ, sinθ cosθ 2 2π 5 Y 2 ( θ, sin 2 θ θ 2 4 2π cos 5 2 θ ϕ 2 Y- 2(, ) sin θ cosθ 4 2π iϕ ϕ e i ϕ e 2i ϕ e 2i
4 0 P 0 0 P P ± 0 P 2 P ± 2 P ± 2 2
5 Ab owiąać cęść adialną wacam do ównania: Mnożąc pe dostajem: Dla stanów wiąanch o E<0 wpowadam nową mienną ρ:, aś d
6 Tea mnożąc pe dostajem: Wpowadając stałą mam: Dla dużch ρ ównanie to pbiea fomę: owiąaniami postaci Rowiąań sukam mnożąc pe funkcję, któa pedstawia achowanie bliżej 0:
7 Na funkcję H dostajem w efekcie ównanie: Tea kolei astępujem funkcję H: i dostajem ównanie na funkcję G: Jest to ównanie óżnickowe Laguee a. Ab owiąania bł bieżne musi achodić: n n + l +, gdie n główna licba kwantowa, aś n jest dowolną licbą całkowitą. Z ównania na funkcję R dostajem: Ponieważ aówno n, jak i l musą bć licbami całkowitmi nieujemnmi, więc: l 0,, 2, 3,..n- Rowiąaniem na cęść pestenną są wielomian Laguee a
8 Zapisując R w postaci S,0 2 S 2,0 S 2, S 3,0 S 3, S 4,0 S 4, S 4,2 S 4,3 S 3,2 gdie
9 Radialne funkcje falowe dla atomu wodou: Stan R nl () 3 a 0 s 2ep( / a0) 2s 2p 3s 3p 3d 2 h gdie a0 2 onaca pomień Boha, μe ( / a ) ep( / / a0 ep( / a 0 ) a ( / a + ( / a0 ) ) ep( / / a0 ( / a0 )ep( / a0 ) ( / a0) ep( / a0) a0 a 0 ο 0, 529 Α ) )
10 degeneacja n l n m l onacenie stanu 0 0 s s -, 0, 2p s -, 0, 3p 3 2-2, -, 0,, 2 3d 5
11 Funkcje R nl () ilość pecięć osią wnosi n-l- n l 0 n 2 l 0, n 3 l 0,, 2
12 Z kombinacji liniowch espolonch funkcji własnch można budować funkcje ecwiste. Poniżej jest to wkonane dla funkcji p -, p 0 i p nich budowane są funkcje p, p i p.
13 s 2s 2p 3d
14 l 0,, 2, 3,..n- -l, -l+, -l+2.< m <.l-2, l-, l E -3,6 ev Emisja (lub absopcja) pomieniowania elektomagnetcnego następuje p pejściu jednego stanu atomu do dugiego i enegia tego pomieniowania pjmuje watości dsketne. Dla atomu wodou oumiem empicne wo opisujące emitowane enegie pomieniowania elektomagnetcnego. W atomie wodou stan o tm samm l a óżnm m mają tę samą enegię e wględu na achowanie momentu pędu. W atomie wodou ównież i stan o tm samm n, a óżnm l mają tę samą enegię wnika to chaakteu enegii potencjalnej, któa ależ jak /. Popawki nosą tę degeneację. W atomach wieloelektonowch tej degeneacji nie ma e wględu na postać funkcji enegii potencjalnej..
15 Opeato momentu pędu p L ) ( ) ( ) ( p p i p p i p p i p p p i i i L L L + + Opeato dla składowch momentu pędu: i p p L h ˆˆ ˆˆ ˆ i p p L h ˆˆ ˆˆ ˆ i p p L h ˆˆ ˆˆ ˆ
16 Opeato Lˆ ma scególnie postą postać we współędnch sfecnch: Lˆ ih ϕ Będie więc diałał tlko na cęść funkcji falowej ależną od φ, Φ(φ). Równanie własne dla tego opeatoa: ˆ Φ( Lψ (, θ, ih ψ (, θ, ihr( ) Θ( θ ) LR( ) Θ( θ ) Φ( ϕ ϕ L mh Jeśli jako watości własne pjmiem, to na funkcję Φ(φ) dostajem: ih Φ( mhφ( ϕ Rowiąaniem jest funkcja imϕ Φ ( Ae Ponieważ Φ(φ) powinna bć peiodcna o okesie 2π, więc dostajem waunek na m: musi to bć licba całkowita. Widać, że funkcje własne Hamiltonianu dla atomu wodou są ównoceśnie funkcjami własnmi opeatoa Lˆ
17 A atem jest skwantowan! Lˆ L mh Podobnie skwantowan jest kwadat całkowitego momentu pędu i jego watości własnch otmujem: Ppomnijm: n,2,3.. l 0,, 2, 3,..n- -l, -l+, -l+2.< m <.l-2, l-, l L l( l +)h Licb kwantowe atomu wodou: n główna licba kwantowa l obitalna licba kwantowa m magnetcna licba kwantowa
18 Doświadcenie Einsteina-de Haasa (95.) dotc istnienia spężenia obitalnego momentu elektonów w atomie i momentu magnetcnego Z obitalnm momentem pędu wiąan jest dipolow obitaln moment magnetcn: watości μob są skwantowane μ ob e 2m e L e μ ob l( l + ) h l( l + )μ B 2m e składowe μ ob, są ównież skwantowane μ ob, mμ B eh eh 24 gdie μ B J / T jest magnetonem Boha. 4πm e 2me m e onaca masę elektonu
Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne
Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna
Atom wodoru w mechanice kwantowej
Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego
PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:
PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci
Ruch kulisty bryły. Kinematyka
Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)
Pręty silnie zakrzywione 1
Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.
Postać Jordana macierzy
Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Równanie Schrödingera dla elektronu w atomie wodoru
Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =
II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Rozdział 9. Baza Jordana
Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,
,..., u x n. , 2 u x 2 1
. Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać
Pola siłowe i ich charakterystyka
W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic
Coba, Mexico, August 2015
Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm
Atom wodoru w mechanice kwantowej
0-05- Fika II la Elktotchniki, lato 0 Tójwmiaowa stunia potncjału atomu woou jst baij łożona niż stuni skutowan wcśnij np. postokątna stunia. Engia potncjalna U jst wnikim oiałwania kulombowskigo pomię
Wstęp do fizyki atomowej i cząsteczkowej
Wstęp do fizyki atomowej i cząsteczkowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciecz) - stuktua poziomów eneg. - stany stacjonane -pzejścia między poziomami stany niestacjonane
Wstęp do fizyki atomowej i cząsteczkowej
Wstęp do fizyki atomowej i cząsteczkowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciecz) - stuktua poziomów eneg. - stany stacjonane - pzejścia między poziomami stany niestacjonane
POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y
POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam
Rozdział 5 Atom Wodoru
Rozdział 5 Atom Wodou 5.1 Zastosowanie ównania Schödingea do ozwiązania zagadnienia Atomu wodou 5. Rozwiązanie ównania Schödingea dla atomu wodou 5.3 Liczby kwantowe 5.4 Efekt Zeemana 5.5 Spin 5.6 Uogólniona
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu
23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA
. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna
Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać:
Cząsteczki. Kwantowy opis stanów enegetycznych cząsteczki. Funkcje falowe i enegia ektonów 3. Ruchy jąde oscylacje i otacje 4. Wzbudzenia cząsteczek Opis kwantowy cząsteczki jest badziej skomplikowany
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
BUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π
DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości
napór cieczy - wypadkowy ( hydrostatyczny )
5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka
Podstawy fizyki atomowej
Podstawy fizyki atomowej Pzedmiot badań: atom, cząsteczka (pojedynczy - nie kyształ ani ciec - stuktua poziomów eneg. - stany stacjonane - pzejścia między poziomami stany niestacjonane - oddziaływania
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze
Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm
KINEMATYKA. Pojęcia podstawowe
KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu
Fizyka dla Informatyki Stosowanej
Fika dla Infomatki Stosowanej Jacek Golak Semest imow 16/17 Wkład n 13 Pole magnetcne Pole magnetcne opiswane jest p pomoc wektoa indukcji magnetcnej B o tej własności że na ładunek elektcn pousając się
(U.17) Zastosowania stacjonarnego rachunku zaburzeń
3.0.004 38. U.7 Zastosowania stacjonanego achunku zabuzeń 66 Rozdział 38 U.7 Zastosowania stacjonanego achunku zabuzeń 38. Stuktua subtelna w atomie wodoopodobnym 38.. Hamiltonian i jego dyskusja Popzednio
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Wykład 2: Atom wodoru
Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali
Czarnodziurowy Wszechświat a ziemska grawitacja
biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono
Podstawy fizyki atomowej
Jakub Zakzewski - Opate o wykłady W. Gawlika Podstawy fizyki atomowej - stuktua poziomów eneg. - stany stacjonane - oddziaływania z zewn. czynnikami (polami i cząstkami) Główne kieunki ozwoju: - spektoskopia
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
Budowa atomów. Atomy wieloelektronowe Zakaz Pauliego Układ okresowy pierwiastków
Novosibirsk Russia September 00 W-6 (Jarosewic) slajdy Na podstawie preentacji prof. J. Rutkowskiego Budowa atomów Atomy wieloelektronowe Zaka Pauliego Układ okresowy pierwiastków Atomy wieloelektronowe
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?
TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
ELEKTRODYNAMIKA TECHNICZNA
PAWEŁ ZIMNY ELEKTRODYNAMIKA TECHNICZNA WYKŁADY DLA SPECJALNOŚCI ZAMAWIANEJ TECHNOLOGIE INFORMATYCZNE W ELEKTROTECHNICE WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ Mateiał ostał pgotowane w wiąku ealiacją pojektu
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne
Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja
ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne
Ekoenergetyka Matematyka 1. Wykład 1.
Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych
Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie
Wykład 9 Podstawy teorii kwantów fale materii, dualizm falowo-korpuskularny, funkcja falowa, równanie Schrödingera, stacjonarne równanie Schrödingera, zasada nieoznaczoności Heisenberga, ruch cząstki swobodnej,
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A
Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam
15 Potencjały sferycznie symetryczne
z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły
Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t
Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n
P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).
Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich
Nieskończona jednowymiarowa studnia potencjału
Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,
Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu
Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy
TEORIA SPRĘŻYSTOŚCI 10
W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,
Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B
Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=
W przypadku układów złożonych z dwóch lub więcej podukładów wyróżnia się klasę stanów separowalnych
Stany splątane Kryterium częściowej transpozycji W przypadku układów złożonych z dwóch lub więcej podukładów wyróżnia się klasę stanów separowalnych Stany czyste Projektor na wektor produktowy jest stanem
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie
Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t
Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n
Wczesne modele atomu
Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Konfiguracja elektronowa atomu
Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa
LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1
LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY
Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
J. Szantyr Wykład 11 Równanie Naviera-Stokesa
J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.
>> ω z, (4.122) Przybliżona teoria żyroskopu
Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y
METODA CIASNEGO (silnego) WIĄZANIA (TB)
MEODA CIASEGO silnego WIĄZAIA B W FE elektony taktujemy jak swobone, tylko zabuzone słabym peioycznym potencjałem; latego FE jest obym moelem metalu w B uważamy, że elektony są silnie związane z maciezystymi
Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii
I V. N a d z ó r... 6
C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 1 d o U c h w a ł y n r 2 2. / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. P
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
BUDOWA ATOMU cd. MECHANIKA KWANTOWA
BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością
DryLin T System prowadnic liniowych
DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania
Fale skrętne w pręcie
ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
Uklady modelowe III - rotator, atom wodoru
Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi
Fizyka dla Informatyki Stosowanej
Fiyka dla nfomatyki Stosowanej Jacek Golak Semest imowy 018/019 Wykład n 1 Na ostatnim wykładie wkocyliśmy w magnetym, omawiając Definicję pola magnetycnego (wó Loenta) Linie pola magnetycnego Siłę diałającą
PRAWO FOURIERA - KIRCHOFFA WYKŁAD 12
PRAWO FOURIERA - KIRCHOFFA WYKŁAD Daius Mikielewic Politechnika Gdańska Wydiał Mechanicny Kateda echniki Cieplnej Pawo Fouiea-Kichhoa Założenia upascające ównanie F-K:. agadnienie stacjonane, /τ. agadnienie
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:
Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
gęstością prawdopodobieństwa
Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania
Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie: