Tabele wzorów fizycznych i matematycznych. Wartość siły grawitacji. m dt. Natężenie pola grawitacyjnego. Wartość γ dla planety kulistej ( )
|
|
- Kacper Marczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 uch rostoliiowy (odao wartości Prędkość śrdia Przysiszia: śrdi i chwilow a Tabl wzorów fizyczych i matmatyczych v v t t F( t d ; v a m Prędkość vk v + a t Droga Prędkość i droga w ruchu jdostaji zmiym s s + v t + at v v + a s s k k uch o okręg (odao wartości Prędkość kątowa ω α t ; v ω; ωk ω + t Przysiszi kątow Droga kątowa Prędkość i droga kątowa w ω t α α + ω + t t ruchu jdostaji zmiym ω ω + ( α α Przysiszi stycz Przysiszi dośrodkow k k ast ω ados v Częstotliwość f 1 T Dyamika Pęd mv Druga zasada dyamiki F ma; F t Wartość siły tarcia FT FN Ciężar ciała Q mg Wartość siły dośrodkowj Fdos mv mω Praca mchaicza W F cos ( ( F, Twirdzi o racy i rgii kityczj Twirdzi o racy siły otcjalj i rgii otcjalj Dyamika ruchu obrotowgo W k W Wartość momtu siły M F si ( ( F, Momt bzwładości I i 1 m r i i Twirdzi Stira I I + md ŚM Momt ędu r ; Iω Wartość momtu ędu si ( (, II zas. dy. dla ruchu obrotowgo M I ; M t Środk masy układu uktów matrialych Praca, rgia, moc rgia kitycza ruchu ostęowgo i obrotowgo v s t r m r m s r i i i i 1 i 1 mv Iω k ; k rgia otcjala (mał zmiay wysokości mgh W Moc P ; P Fv; P Mω t 1 Grawitacja Wartość siły grawitacji Natężi ola grawitacyjgo Wartość γ dla laty kulistj m m Fg G G Nm kg 1 11 ; γ F g γ Gm Grawitacyja rgia otcjala ot Gm1m Wartość rzysiszia grawitacyjgo rzy owirzchi imi g Gm m 1 s imi I i II rędkość ; kosmicza imi m v Gm v v I II I III rawo Klra T 4π r 3 ( Gm Hydrostatyka Siła arcia i ciśii F S Ciśii hydrostatycz ρ gh Wartość siły wyoru F W ρ g ówai ciągłości v S cost. Prawo Broulligo v + ρ gh + ρ cost. Naięci owirzchiow W F σ ; σ S l Srężystość Siła srężystości F k Prawo Hook a F l σ S l Narężia objętościow κ rgia otcjala k srężystości Waruki rówowagi F ; M wy uch drgający Drgaia itłumio: d ɺɺ ówai ruchu, rzmiszczi t A ωt + Częstość kołowa ω π T wy ma m m k, cos( φ Wartość rędkości v( t Aω si( ωt + φ l Okrsy wahadł T π ; I m T π ; T π g mgd k Drgaia tłumio: ówai ruchu, rzmiszczi, log. dkrmt tłumiia rgia tłumioych i itłumioych drgań d ma m m ɺɺ k bv, { βt A cos ω φ ; l ; t t + Λ } A A b ω ω β ; β ; ω k m. m ka ka c ; c +1 βt
2 Drgaia wymuszo Siła F ( t F cos( ω t wymuszająca ówai ruchu ma k bv + F cos( ω t Przmiszczi drgań ustaloych ( t Asi( ω t + φ Trmodyamika fomologicza Amlituda A F m ( ω ω + ( bω m l αl T ozszrzalość liiowa Ciło właściw, c Q ( m T ; c ciło rzmiay rzm. Qrzm. m ówai gazu doskoałgo T ówai adiabaty Wzór Mayra, wykładik adiabaty Praca gazu (stał ciśii κ costas C C ; κ C C W Praca gazu δ W d, W d I zasada trmodyamiki rgia wwętrza gazu U C doskoałgo T + U II zasada trmodyamiki S δ Q U + δw Q miaa troii d S δq / T, S dt T Srawość Qużytcz T1 T η silika Carot Q T miaa troii gazu doskoałgo δ calkowit 1 + końc. S l C ocz. T l T końc. ocz. Praca w rzmiai W T l izotrmiczj ( końc ocz Ciło molow gazu idalgo du C o i stoiach swobody i / dt lmty trmodyamiki statystyczj Fukcja rozkładu N j j Boltzmaa N k BT Fukcja rozkładu Mawlla Śrdia rędkość kwadratowa 3/ m f ( v 4π v mv ( k BT πk BT v T m 3k B / Mikroskoow rówai N gazu doskoałgo k ( 3 troia Boltzmaa- Placka; kwat troii S kb l Ω; k B l uch falowy ówai fali y (, t y si ( ωt k ówai falow Prędkość fazowa fali orzczj w strui y 1 y c t c N ρ / Prędkość fali w ciczy c κ / ρ Odkształci względ ośrodka wywoła ruchm falowym Prędkość cząstczk ośrodka wywołaa ruchm falowym Oór akustyczy ośrodka Śrdia rgia mchaicza fali małgo fragmtu ośrodka o masi m Śrdia moc rgii fali srężystj ρc y y v t m v / ρscv / Śrdia itsywość fali srężystj (gęstość strumiia rgii fali ρcv / Śrdia gęstość rgii fali srężystj ρv / Odlgłość midzy węzłami fali stojącj λ / fkt Dolra f f ( v v ( v ± v ź d ź Prędkość dźwięku c ( κ / ρ Natężi dźwięku Pol ciśiia fali dźwiękowj s, t s cos k ωt β 1log ; 1 W/m 1 ( ω ( ρω si k t ; c s Częstotliwość dudiń f1 f Prędkość gruowa fali dω d vgr c( k k dk dk d c( k dc c + k c λ dk d λ Wybra stał fizycz 11 Nm 3 G 6, 67 1 ; k B 1,38 1 ; kg K 1 mol mol K 3 NA 6, 1 ; 8,31
3 lktrostatyka Prawo Coulomba ( 4π ( 4π F q q r q q r 1 r 1 Natężi ola F q Wktor idukcji ola D lktryczgo rε Ε Momt siły działającj a diol qd τ rgia otcjala diola Prawo Gaussa r d S Qww wiązk koń cow a racy z rgią W otcjalą rgia otcjala oczątkow a r W óżica koćowy oczątkowy W q otcjału Potcjał ( r W r q q w ukci wiązk rgii z Ε grad otcjałm Pojmość C Q U lktrycza Pojmość łaskigo C rs d S d kodsatora rgia otcjala CU / kodsatora łaskigo Gęstość rgii ola u lktrostatyczgo D / r / Pojmość układu kodsatorów ołączoych C C i rówolgł Stały rąd lktryczy Natężi rądu I dq Wktor gęstości rądu j v r d Prawo Ohma U I óżiczkow rawo Ohma j σ Oór rostoliiowgo ρ S ( σ S rzwodika alżość ooru właściwgo od ρ T ρ 1 + α( T T tmratury Moc lktrycza P U I [ ] Stały rąd lktryczy c.d. Siła lktromotorycza SM dw dq Prawo Ohma dla I SM ( + r obwodu zamkiętgo Oór układu oorików ołączoych szrgowo Ładowai kodsatora q( t C SM 1 t C ozładowywai kodsatora t q t q Magtostatyka i C Siła ortza F Q B Siła ortza F I B Prawo Gaussa B ds Magtyczy momt diolowy I S Momt siły działającj a τ B diol B rgia otcjala diola magtyczgo wiązk racy z rgią otcjalą W końcowa oczątkowa Źródła ola magtyczgo Prawo Biota- r Ids r Ids r db 3 3 Savarta 4π r 4π r Wktor idukcji ola B r H magtyczgo Pol magtyczgo ri rostoliiowgo B rzwodika π Pol magtyczgo r Iφ rzwodika w B kształci łuku okręgu 4π Prawo Amr a B d r I Pol B r I r IN IN soloidu Pol toroidu B rin ( πr IN ( πr 3
4 Idukcja lktromagtycza, magtyzm matrii Strumiń Φ mag. B d S magtyczy Prawo Faradaya SM dφ mag. d Idukcyjość cwki NΦ / I mag. SM samoidukcji SM di Idukcyjość wzajma Szrgowy obwód włączai rądu (1 SM ( SM M di M di SM I ( t 1 1 t t I t I Szrgowy obwód wyłączai rądu rgia ola magtyczgo cwki mag. I / Gęstość rgii ola umag. B H / r H / magtyczgo Uogólio rawo B d r r dφ lktr. d t + Amr a- + ri dφ lktr. d t + I Mawlla Drgaia lktromagtycz i rąd zmiy Obwód q( t q cos C { t / ( C + ϕ } Obwód C Obwód C: wymuszo drgaia lktry -cz Trasfor- q( t q ( Ω t + ϕ t cos ; Ω ( 1/ C / ( ( t ( ω t wym. sk. C si, tg, ( ω wym. C wym. sk. sk. sk. si, /, I ( t I ( ωwym. t ϕ ϕ I / / + ( C, ω, 1 / C, I I /, P I cos ϕ. U U N / N ; I I N / N matory w w w w Fal lktromagtycz (, t si( k ωt, Pol fali, t si( k ωt Prędkość c B B c B / 1 / c /, r r 1 /, r r Fal lktromagtycz c.d. Wktor S H Poytiga ( B / ( r Natężi śrdi I fali S c / r Natężi w odlgłości r od źródła fali I r P / źródla ( 4πr Ciśii fali ła absorcja / I c Ciśii fali ł odbici I / c Natężi światła solaryzowago Isol. Iisol. / Prawo Malusa I sol. I Θ cos sol. 1 si Θ 1 si Θ Praw załamaia wirciadła i soczwki. Itrfrcja. Dyfrakcja 1 wirciadła sfrycz + 1 1, s s f r Ciki soczwki 1 1 soczw + 1, ki s s f otoczia 1 Długość fali w ośrodku λ λ / Doświadczi Youga itrfr- - d si Θ m λ; m, ± 1, ±,... -cja kostruktywa Itrfrcja kostruktywa λ d ( m + 1 ; m, ± 1, ±,... w cikich warstwach Dyfrakcja a ojdyczj a si Θ m λ; m ± 1, ±,... szczlii - miima Dyfrakcja a okrągłj si Θ 1, ( λ / d szczlii - miima Dyfrakcja a siatc d si Θ m λ; dyfrakcyjj - maksima m, ± 1, ±,... Dyfrakcja a siatc o krystalograficzj d cos( 9 Θ m λ, maksima, waruk m 1,,... Bragga Krytrium ayligha Θ 1, ( λ / D 4
5 Szczgóla toria względości Trasfor -macj ortza, γ t, γ 1/ 1 β, y y, z z, t γ t / c,,, Dylatacja czasu t 1 β t, β / c Skróci długości Trasformacja rędkości latywistyczy fkt Dolra źródło oddala się Pęd rlatywistyczy Całkowita rgia rlatywistycza latywi stycza rgia i ęd latywistyc za rgia kitycza Fotoy i fal matrii Promiń -tj orbity modlu Bohra atomu wodoru Prędkość lktrou a -tj orbici modlu Bohra atomu wodoru Poziomy rgtycz lktrou w atomi wodoru 1 β / ' ' c 1 β f f 1+ β γ m calk. ( rl. ( c + ( mc + ( γ 1 γ m c calk. rl. kitycza kitycza rl. rl. c m c m c kitycza rl. m c calk. rl. h 11 r 5,3 1 m πm v 6,19 1 m/s h 4 m 1 8h 13,6, 1,,3,... Kwat rgii (foto hυ Prawo Stfaa- Boltzmaa Φ σt σ 4 ;, W /(m K Pęd fotou / c hυ / c h / λ Fotoy i fal matrii c.d. Prawo Wia λ. T cost. ówai istia fotofktu hυ + W h mc ki Przsuięci Comtoa λ ( 1 cosφ Miimala rgii kracji cząstka-atycząstka Hiotza d Brogli a / ówai Schrödigra Fukcja falowa stau stacjoargo asada iozaczoości dla ojdyczgo omiaru asada iozaczoości dla srii omiarów asada iozaczoości dla ojdyczgo omiaru asada iozaczoości ( m c mi λ h ħ d ψ + U m d ψ ψ ( ψ ( ( it / Ψ ħ ħ; y ħ; y z ħ z ( ( y ( y σ ( σ ħ / 4; σ ( σ ħ / 4; y σ ( σ ħ / 4 y t ħ σ σ ħ ( ( t / 4 dla srii omiarów Tulowai kwatow Długości fal matrii cząstki kwatowj w bardzo głębokij studi otcjalj rgia cząstki kwatowj w bardzo głębokij studi otcjalj Fukcja falowa cząstki kwatowj w bardzo głębokij studi otcjalj ( k T, k ( m U ħ λ / ; 1,,3,... ( λ m h / / m h 1, 1,,3,... 8m ψ π si ( ( 5
6 Atomy wilolktroow Kwatowai orbitalgo momt ędu o lktrou Kwatowai rzstrz orbitalgo momt ędu lktro -u - rzut a dowolą oś O orb orb l l + 1 ħ, l,1,..., 1 mħ, m l, l + 1,, l 1, l m Orbitaly momt magtyczy lktrou orb. orb. Kwatowai orbitalgo momtu magtyczgo lktrou ħ m m, orb orb B m m m l, l + 1,... 1,,1,..., l 1, l Si S lktrou z S s s + 1 ħ, s 1/ Kwatowai siu S S lktrou msħ; ms ± 1/ Siowy momt s S magtyczy lktrou m Kwatowai siowgo momtu magtyczgo S S B lktrou m S m Graica krótkofalowa romiiowaia X λ mi hc / Prawo 15 Moslya f (,48 1 Hz( 1 Fizyka jądrowa i rgia jądrowa Promiń 1/ 3 jądra r r A, r 1, fm Si S rotou/utro u S s ( s + ħ s Kwatowai siu S S msħ ms ± rotou/utrou ądrowy magto m Kwatowai momtu magtyczgo rotou Kwatowai momtu magtyczgo utrou Prawo rozadu romiiotwórczgo Aktywość 1, 1/ ; 1/ roto ±, 798 ± 1,913 N ( t N ( λt ( t λn ( t romiiotwórcza rgia wiązaia jądra atomowgo Waruk kotrolowaj fuzji izotoów wodoru A M + N M M c B H H 3 τ > 1 s/m rgia wiązaia jdgo uklo / B Dfkt masy rakcji jądrowj M M M oczątkowa A końcowa Q M c rgia rakcji jądrowj ozszrzający się Wszchświat Prawo Hubbl a v H r; H ~,3 1 s 18-1 Włodzimirz Saljda 6
7 7
8 8
9 9
Praca domowa nr 1 Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej
Praca domowa r Grua. Szacowai warości wilkości fizyczych Wrowadzi: W wilu zagadiiach irsuj as rzybliżoa warość wilkości fizyczj X. Moż o być sowodowa ym, ż wyzaczi dokładj warości rwałoby długo, wymagałoby
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
PRZYKŁADY RUCHU HARMONICZNEGO. = kx
RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Fale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC
4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY
Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego
Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1
RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium
Fizyka Kolokwium Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 Fizyka w poprzednim odcinku Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM dt B Siła elektromotoryczna
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii
FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Karta wybranych wzorów i stałych fizycznych
Kata wybanych wzoów i stałych fizycznych Mateiały pomocnicze opacowane dla potzeb egzaminu matualnego i dopuszczone jako pomoce egzaminacyjne. publikacja współfinansowana pzez Euopejski Fundusz Społeczny
FIZYKA 2. Janusz Andrzejewski
FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd
Wydajność konwersji energii słonecznej:
Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego
Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i
1 S t r o n a 6. Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i gazach. Prawo Hooke a: Siła sprężystości: F Xsp = k. 0) Co do wartości bezwzględnej jest ona równa (lub
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
SPIS TREŚCI ««*» ( # * *»»
««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak
FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w
λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o
W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac
w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny
58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola
Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze
projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.
WM-E; kier. MBM, lista zad. nr 1. pt. do kursu Fizyka 1.6, r. ak. 2015/16; Sprawy organizacyjne.
WM-; kier. MBM, lista zad. r 1. t. (z karty rzedmiotu: Srawy orgaizacyje. Metodologia rozwiązywaia zadań z fizyki. Waruki zaliczeia. ozwiązywaie zadań z zakresu: aalizy wymiarowej; szacowaia wartości wielkości
falowa natura materii
10 listopada 2016 1 Fale de Broglie a Dyfrakcja promieni X 1895 promieniowanie X dopiero w 1912 dowód na ich falowa naturę - to promieniowanie elektromagnetyczne zjawiska falowe: ugięcia, dyfrakcji - trudne:
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 26, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 26, 28.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 25 - przypomnienie
Wykład 2: Od drgań do fali Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 2: Od drgań do fali Katarzyna Weron WPPT, Mateatyka Stosowana Drgania układów o dwóch stopniach swobody k κ k Równania Newtona: Dodaj równania: x 1 x 2 (x 1 + x 2 ) = k(x 1 +x 2 ) x 1 = kx 1 κ x
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
Wiadomości wstępne. Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji
Wiadomości wstępne Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990 000 Bevatron PS AGS
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
1 Szacowanie wartości wielkości fizycznej. Proszę uważnie przeczytać. W wielu zagadnieniach interesuje nas przybliżona wartość wielkości
WPPT; kier. Iformatyka; lista zad. r 1. t. (z karty rzedmiotu ozwiązywaie zadań z kiematyki uktu materialego ruch jedowymiarowy, ruch dwuwymiarowy.[3 godz.] do kursu Fizyka, r. ak. 15/16; od koiec listy
Układy cząstek i bryła sztywna. Matematyka Stosowana
Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne
Rozdział 1 Wiadomości wstępne. Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji
Rozdział 1 Wiadomości wstępne Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Własności falowe materii
Część 3 Własności falowe materii 1. Rozpraszanie promieni X 2. Fale De Brogliea 3. Rozpraszanie elektronu 4. Ruch falowy 5. Transformata Fouriera 6. Zasada nieokreśloności 7. Cząsteczka w pudle 8. Prawdopodobieństwo,
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych
r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego
Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.
Zasady zachowania Pęd i moment pędu Praca, moc, energia Ruch pod działaniem sił zachowawczych Pęd i energia przy prędkościach bliskich prędkości światła Pęd i moment pędu dp/dt = F p = const, gdy F = 0
będzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Sekantooptyki owali i ich własności
Sekantooptyki owali i ich własności Magdalena Skrzypiec Wydział Matematyki, Fizyki i Informatyki Uniwersytet Marii Curie-Skłodowskiej 19 października 2009r. Informacje wstępne Definicja Owalem nazywamy
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad 10 015/016, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki
58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej
Siły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe