v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
|
|
- Beata Lewandowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d
2 r = x y T d ± r ± = r x d r ± = r d ± = x ± d = y y E = E E = k q r 3 r k q r 3 r = kq r 3 x d y ) x d r 3 y r ± = b y = x = x ± d ) y E y = ) = kq ) x d E x = ) = kq x d d ) d 3/ 4 y ) ) c r 3 r 3 d/ r 3 ± = x ) ± d y ) 3 = ) 3 3 ± d ) x x y ) 5... x y r 3 3 xd r 5 d E r d) = kq r 3 3 xd r 5 d µ = qd T µ E x = ) = k ) d 3/ 4 y E r d) = k µ µr 3k r3 r 5 r 3q q q q A A b x y )
3 c A V = kq ) b q q 3q W = kq 3kq ) = kq 6 ) c r = x y T r x q = y r 3q = x y r x q = y ) V x, y) = kq x y ) 3 x ) y x ) y ) x Ex, y) = V x, y) = kq 3x) x x y ) ) 3 x) y ) 3 x) y ) ) 3 y ) 3y y x y ) ) 3 x) y ) 3 x) y ) ) 3 x = y = q d b d V = kq ) r r r ) = x r ± r± 3 x ± d ) r ) y r ± = r± 3 y
4 b r r d/ r ± r xd r 3 V r d) = kq xd r 3 = k µr r 3 r = x y T µ = µ x µ x T r = x y r d x V E = k µx r 3 µ y r 3 3 µxxµyy r 5 3 µxxµyy r 5 V x, y) = k µ xx µ y y x y ) 3/ V x = k µ x r 3 3k µ xx µ y y r 5 x x = k r3 y µ x µ y 3k µ xx µ y y r 5 x y = k µ µr 3k r3 r 5 r Q µ b c A α A A A 3q q µ 9 q A b c m = l = Q x = α F = k Q x F n F g = mg
5 F n sin α = k Q x F n cos α = mg F n sin α kq = tn α = F n cos α mgx = x l 4 x Q = mgx3 k l 4 x / Q e q q 3q q b r q = r q = µ = q 3 3 r 3q = r q = 3 6 r q = r 3q = q q d q b q b b 3 3
6 c ϱ σ < b < c c λ σ S r E ds E ds = E ds S E ds = E S ds = 4πr E = q ϵ E = 4πϵ q r b Q = 4 3 πb3 3 )ϱ Q = 4πc σ r r S E ds = E I = r b b r < c r > c r = c S E ds = 4πr E = 4πr3 3 )ϱ E II = ϱ r 3 3 ) 3ϵ 3ϵ r 4πr E = Q ϵ = 4πb3 3 )ϱ E III = ϱ b 3 3 ) 3ϵ 3ϵ r 4πr E = Q Q = 4 ϵ ϵ 3 πb3 3 )ϱ 4πc σ E IV = ϵ r 3 b3 3 )ϱ c σ r V r) = r E dr = c V II r) = c V III r) = Q Q b 4πϵ r dr c r V IV r) = Q Q r 4πϵ r dr c Q r 4πϵ r dr b E dr Q Q 4πϵ r dr = Q Q 4πϵ r Q 4πϵ r dr = Q 4πϵ r Q ) c ϱ b 3 3 ) 3ϵ r dr = Q 4πϵ r Q ) ϱ r c 3ϵ b 3 r ) b
7 V I r) = Q 4πϵ r Q ) ϱ c 3ϵ b 3 ) b c l Q = λl Q = πlσ r S S S r < S E ds = E ds S S E ds = E r > S ds = πrle = Q ϵ E I = λ πrϵ E II = λ πσ πrϵ R > r < r λ πσ V II = E dr = ln πϵ R V I = λ πrϵ ln R r ) σ ϵ ln V x, y) = y x A = y x y = A x E = x A E dr E dr = dx dx dr = = dy x dx x R r R ) ) dx = x dx E dr E E q m
8 v b v k d r = T v = v T F = qe = qe T m x x X x = v x = ẍ vt) = rt) = = qe qe m t v qe m t v t xy) = qe mv b qed y W = qed = m v k v ) v k = v qe m d Y E φ I ˆα = digα, α, α ) ) b c E U E cos φ E = E sin φ U
9 α µ = ˆαE = α α U E cos φ E sin φ U = b τ = µ E = e x e y e z α E cos φ α E sin φ E cos φ E sin φ α E cos φ α E sin φ U = E α α ) sin φ cos φ e z I I d φ dt = E α α ) sin φ cos φ sin φ cos φ = sinφ) φ = φ d φ dt E α α ) φ = I ω = E α α c I de p = µ de = α cos φ α sin φ)e de E p = α cos φ α sin φ)e α µ µ r µ µ = r µ α = r µ α = µ µ E p µ, µ ) = µ k µ rµ 3 3 µ ) r µ µ µ µ µ rµ 5 r µ µ = k µ rµ 3 3 µ ) r µ µ )µ r µ µ ) µ rµ 5 = 3k µ 8 3 µ µ
10 α E µ µ E p µ, α) E p µ, α) = αe µ µ E µ µ = k µ rµ 3 α 3 µ ) r µ α rµ 5 r µ α k µ α rµ 3 α E µ µ = E µ µ E µ µ = 4k 6 µ µ ) E p = 3k 8 3 µ µ k 6 αµ µ ) 3 µ ) r µ α rµ 5 r µ α = k α 3 µ µ ) d ϱ Q V b d V Q c d L V Q Q ϱ ϱ d S b ϵ c b d L b ϵ S d U ϵ A B b c R
11 U C b ϵ c b d c e d R I b A I b c < b < c b I d ϱ v X Y b b I
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
4.1. Lecture 4 & 5. Riemann. f(t)dt. a = t 0 <t 1 < <t n 1 <b= t n (4.1) , n [t i 1,t i ] t i t i 1 (i =1,...,n) f(ξ i )(t i t i 1 ) (4.
Lecture 4 & 5 4 4.1 Riemnn t f(t) [, b] (Riemnn ) f(t)dt [, b] n 1 t 1,...,t n 1 t 0
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Stochastyczne równania różniczkowe, studia II stopnia
Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że
R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )
5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Wiadomości wstępne. Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji
Wiadomości wstępne Krótka historia Przekrój czynny Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990 000 Bevatron PS AGS
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Rozdział 1 Wiadomości wstępne. Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji
Rozdział 1 Wiadomości wstępne Krótka historia Przekrój czynny, świetlność Układ jednostek naturalnych Eksperymenty formacji i produkcji Historia fizyki cząstek w pigułce 1930 1940 1950 1960 1970 1980 1990
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
1 Elektrostatyka. Odp. 1 x 2 + y 2 + (z h) 2. 1 x 2 + y 2 + (z + h) 2
1 Elektrostatyka Zad 1. Znaleźć potencjał Φ i natężenie pola elektrycznego E w punkcie P, leżącym na osi pierścienia o promieniu wewnętrznym R 1 i zewnętrznym R w odległości z od środka pierścienia, jeśli
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.
Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
Procesy Stochastyczne - Zestaw 1
Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie
Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)
Zadania z mechaniki dla nanostudentów Seria 3 (wykład prof J Majewskiego) Zadanie 1 Po równi pochyłej o kącie nachylenia do poziomu równym α zsuwa się klocek o masie m, na który działa siła oporu F = m
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................
Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne zadań dla sudenów kierunku Auomayka i roboyka WEAIiIB AGH Michał Góra Wydział Maemayki Sosowanej AGH I. Równania o zmiennych rozdzielonych: y = f (y)f () Zadanie. Rozwiąż
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze
projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.
EGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
Analiza Matematyczna część 5
[wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe
Ilustracja metody MONTE CARLO. obliczania całek podwójnych
Ilustracja metody MONTE CARLO obliczania całek podwójnych Często jest tak, iż wiemy, że istnieje całka oznaczona z funkcji f jednak nie potrafimy jej analitycznie policzyć. Konieczne jest wtedy zastosowanie
Wykład 10: Całka nieoznaczona
Wykład 10: Całka nieoznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2016/2017 Motywacja Problem 1 Kropla wody o średnicy 0,07 mm
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Co to są równania ruchu? Jak je całkować?
Co to są równania ruchu? Jak je całkować? Maria Przybylska CA UMK 10.03.2010 M. Przybylska (CA UMK) Ruch i całki 10.03.2010 1 / 29 Ruch ciała i jego opis Problemy co to jest ruch: zmiana położenia ciała
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.
Lecture 8 & 9 7, r f(x) =lim f(x) (7.) r r f(x) =lim f(x) +lim f(x) (7.) r r r 7. f(z) I = f(x) (7.) f(z), z ( argz π), zf(z) [ R, R], : z = R Jordan C f(z). C f(z)dz = R R f(x) + f(z)dz =πi i Res z=zi
Podstawowe rozkłady zmiennych losowych typu dyskretnego
Podstawowe rozkłady zmieych losowych typu dyskretego. Zmiea losowa X ma rozkład jedopuktowy, skocetroway w pukcie x 0 (ozaczay przez δ(x 0 )), jeżeli P (X = x 0 ) =. EX = x 0, V arx = 0. e itx0.. Zmiea
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Zasada bezwładności. Isaac Newton
Prawa ruchu Zasada Zasada bezwładności Druga Druga zasada dynamiki i równania ruchu Ruch Ruch swobodny i nieswobodny Przykłady rozwiązywania równań ruchu Opis Opis ruchu w nieinercjalnym układzie odniesienia
1 Równania różniczkowe drugiego rzędu
Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez
Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości
Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy
< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Egzaminy, styczeń/luty 2004
Egzaminy, styczeń/luty 2004 Trzeci termin Trzeci termin egzaminu poniedziałek 8/03/04 godz. 11.30-13.30 (4-5 osób) i 15.00-16.30 (4-5 osób). Zainteresowane osoby proszę o wysłanie mail a z określeniem,
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
Teoria ze Wstępu do analizy stochastycznej
eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW Materiały pomocnicze do wykładu (Inżynieria Środowiska) PWSZ w Elblągu dr hab. inż. Cezary Orlikowski Instytut Politechniczny MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW MECHANIKA
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
ZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
Analiza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej
Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Rozdziaª 2. Analiza spektralna
Rozdziaª 2. Analiza spektralna MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 2) Analiza spektralna 1 / 18 Widmo szeregu czasowego W analizie spektralnej szereg {y t : t = 1, 2,..., T } postrzegany
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.
1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/
Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki
Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych
Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
PRZYKŁADY RUCHU HARMONICZNEGO. = kx
RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest
A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina
/28 A. Odrzywołek Dziura w Statycznym Wszechświecie Einsteina Seminarium ZTWiA IFUJ, Środa, 26..22 2/28 A. Odrzywołek 3-sfera o promieniu R(t): Równania Einsteina: Zachowanie energii-pędu: Równanie stanu
Przetwarzanie i Kompresja Obrazów. Przekształcenia geometryczne
Przetwarzanie i Kompresja Obrazów. geometryczne Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 1 kwietnia
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
Numeryczne aproksymacje prawdopodobieństwa ruiny
Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/
Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski
Komputerowa analiza danych doświadczalnych Wykład 3 9.03.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Dwuwymiarowe rozkłady zmiennych losowych Jednoczesne pomiary