Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
|
|
- Juliusz Kowalczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym
2 Przypomnienie Równowaga bryły sztywnej trwała obojętna chwiejna Nieznaczne (infintezymalne) wychylenie bryły z położenia równowagi powoduje: podniesienie środka masy, wzrost energii potencjalnej siła wypadkowa przywracajaca równowagę stała wysokość środka masy zmiana położenia równowagi obniżenie środka masy, zmniejszenie energii potencjalnej pojawienie się siły wypadkowej zwiększajacej wychylenie Typ równowagi zależy od zmiany położenia środka masy ( F = Ep) A.F.Żarnecki Wykład XXIII 1
3 Równowaga Statyka Zmiana położenia środka masy, przy wychyleniu z położenia równowagi, zależy od kształtu bryły, ale także od charakteru więzów. Np: równowaga kuli zależy od kształtu powierzchni na której leży równowaga trwała obojętna chwiejna A.F.Żarnecki Wykład XXIII 2
4 Obrót wokół ustalonej osi φ Prawa ruchu Pod wpływem momentu siły M: ε = d ω dt M = d L dt = d ω dt i m i r 2 i = ε I M ε = I = I - moment bezwładności względem wybranej osi. r m A.F.Żarnecki Wykład XXIII 3
5 Moment bezwładności Przyspieszenie katowe w ruchu bryły sztywnej zależy nie tylko od masy całkowitej, ale także od jej rozłożenia względem osi obrotu. Rozkład masy względem wybranej osi obrotu (najczęściej przechodzacej przez środek masy, ale nie koniecznie) opisuje moment bezwładności I = i m i r 2 i w przypadku ciagłego rozkładu masy - całka po objętości: I = Dla ciała jednorodnego (ρ = const = M V ): I = M V dv ρ r 2 dv r 2 = M dv r 2 dv = M r 2 gdzie r 2 - średni kwadrat odległości od osi obrotu A.F.Żarnecki Wykład XXIII 4
6 Moment bezwładności Stosunek momentu bezwładności do masy zależy od kształtu i rozmiarów ciała: Obręcz (pusta w środku) I M = r2 Obrót wokół osi symetrii wszystkie punkty równoodległe od osi: r 2 = r2 I = M r 2 Obrót wokół średnicy oś obrotu - oś X, średnica prostopadła do osi obrotu - oś Y x 2 + y 2 = r 2 i x 2 = y 2 r 2 = y2 = 1 2 r2 I = 1 2 M r2 A.F.Żarnecki Wykład XXIII 5
7 dr r r ds Koło Moment bezwładności (krażek - masa rozłożona po powierzchni) Obrót wokół osi symetrii Koło = suma wielu obręczy śrenia po powierzchni: r 2 = r 2 ds S = 1 πr 2 = 2π πr r4 = 1 2 r2 I = 1 2 M r2 r 2 2πr dr Obrót wokół średnicy Dla każdej obręczy r 2 zmniejsza się 2 razy I = 1 4 M r2 A.F.Żarnecki Wykład XXIII 6
8 Moment bezwładności Prostokat (masa rozłożona po powierzchni) Obrót wokół osi prostopadłej, przechodzacej przez środek masy r 2 = (x 2 + y 2 ) ds S = 1 ab a 2 dx b 2 dy (x 2 + y 2 ) a 2 b 2 = 1 ab 1 12 (a3 b + ab 3 ) = 1 12 (a2 + b 2 ) I = 1 12 M (a2 + b 2 ) Obrót wokół osi równoległej, przechodzacej przez środek masy Wymiar wzdłuż osi obrotu przestaje być istotny pręt I = 1 12 M b2 = 1 12 M l2 A.F.Żarnecki Wykład XXIII 7
9 Moment bezwładności Sfera (masa rozłożona na powierzchni kuli) Obrót wokół osi symetrii x 2 + y 2 + z 2 = r 2 i x 2 = y 2 = z 2 r 2 = x2 + y 2 = 2 3 r2 I = 2 3 M r2 Kula (masa rozłożona objętościowo) Suma wielu sfer śrenia po objętości: r 2 = 23 r 2 dv V = = πr3 2 3 r 2 4πr 2 dr 8 3 π πr3 5 r5 = 2 5 r2 I = 2 5 M r2 A.F.Żarnecki Wykład XXIII 8
10 Moment bezwładności Twierdzenie o osiach równoległych Zazwyczaj liczymy moment bezwładności względem osi przechodz acej przez środek ciężkości S (wszystkie podane przykłady) Bryła może jednak wirować wokół dowolnej osi... Moment bezwładności względem osi równoległej 0, odległej o h od osi S: (XY: układ środka masy) r 2 io = (x i + h) 2 + y 2 i = h 2 + 2hx i + r 2 is I O = i m i r 2 io = h2 i m i + 2h i m i x i + i m i r 2 is I O = I S + M h 2 Twierdzenie Steinera A.F.Żarnecki Wykład XXIII 9
11 Prawa ruchu Równia pochyła Staczanie po równi pochyłej symetrycznej bryły (obręcz, walec, kula...) bez poślizgu: h l φ T r R Q Θ x x = r φ a = r ε Ruch postępowy (wzdłuż równi): ma = Q sin θ T Ruch obrotowy (względem środka masy): Eliminujac siłę tarcia: I ε = T r ma + Iε = mg sin θ r a = g sin θ 1 + I mr 2 Im większy moment bezwładności, tym wolniej stacza się ciało... A.F.Żarnecki Wykład XXIII 10
12 Prawa ruchu Równia pochyła Zagadnienie można rozwiazać w sposób równoważny korzystajac z chwilowej osi obrotu i twierdzenia Steinera h l φ R r T x Q Θ Równanie ruchu obrotowego względem chwilowej osi obrotu (linia styku bryły z równia): Z twierdzenia Steinera: Otrzymujemy: I o ε = Q sin θ r I o = I + m r 2 mg sin θ r2 a = r ε = I o = mr2 g sin θ mr 2 + I A.F.Żarnecki Wykład XXIII 11
13 Prawa ruchu Równia pochyła Rura Walec a = 1 2 g sin θ a = 2 3 g sin θ 1 3 A.F.Żarnecki Wykład XXIII 12
14 Prawa ruchu Wahadło fizyczne Równanie małych drgań bryły sztywnej, wokół osi obrotu O przechodzacej w odległości l od środka ciężkości S: I o ε = mg sin φ l ( I + ml 2 ) d 2 φ dt 2 mgl φ Częstość drgań (równanie oscylatora harmonicznego): ν = mgl I + ml 2 = g l(1 + I ml 2) l z = l(1 + I ml2) - długość zredukowana wahadła długość wahadła matematycznego o tej samej częstości A.F.Żarnecki Wykład XXIII 13
15 Prawa ruchu Wahadło fizyczne Równanie małych drgańwokół osi obrotu O: O φ m d M I o ε = Mdg sin φ m d 2 g sin φ ( Md ) d 2 φ 3 md2 dt 2 (M + m 2 )dg φ Częstość drgań: ν = g l M m M m g l ( m ) M l z = d M+1 3 m M+ 1 2 m d (1 1 6 mm ) - długość zredukowana wahadła (m M) A.F.Żarnecki Wykład XXIII 14
16 Energia Energia ruchu obrotowego Energia kinetyczna układu ciał: E k = E k + M V 2 CM 2 Bryła sztywna: energia wewnętrzna energia kinetyczna ruchu obrotowego E k = 1 2 i m i v 2 i = 1 2 i m i (r i ω) 2 = 1 2 ω2 I Ciało toczace się bez poślizgu: E k = mv2 2 v = ω r + Iω2 2 = mv2 2 ( 1 + I ) mr 2 m ( 1 + I mr 2 ) - efektywna masa bezwładna przy niezmienionej masie grawitacyjnej A.F.Żarnecki Wykład XXIII 15
17 Energia Równia pochyła h l φ R r T x Q Θ Prędkość jaka uzyska ciało staczajace się bez poślizgu z równi o wysokości h. Z zasady zachowania energii: mgh = 1 ( 2 mv2 1 + I ) mr 2 Przyspieszenie a = v t = v2 2l v = 2gh 1 + I mr 2 prędkość średnia v = 1 2 v = 2gh 2l ( 1 + I ) = mr 2 g sin θ 1 + I mr 2 A.F.Żarnecki Wykład XXIII 16
18 "! Energia Koło Maxwella Koło o promieniu R toczy się po osi o promieniu r. Jak w przypadku równi pochyłej θ = π 2 I r R a = g 1 + I mr 2 mg I = mr 2 a = g r 2 R 2 + r 2 g Przyspieszenie liniowe wielokrotnie mniejsze od przyspieszenia w spadku swobodnym... Energia potencjalna zamienia się głównie na energię ruchu obrotowego. A.F.Żarnecki Wykład XXIII 17
19 Energia Energia przy zmiennym momencie bezwładności Masy przesuwaja się z R = r 1 do R = r 2. I 2mR 2 Z zasady zachowania momentu pędu (układ izolowany): L 1 = ω 1 I 1 = ω 2 I 2 = L 2 Energia kinetyczna układu: E 2 = 1 2 ω2 2 I 2 = 1 2 ω 2 = ω 1 ( r1 r 2 ) 2 ω 2 ω 1 ω 2 1 I 1 = ( ) 2 r1 E 1 r 2 r 2 < r 1 energia kinetyczna rośnie kosztem pracy siły dośrodkowej (energii potencjalnej M) A.F.Żarnecki Wykład XXIII 18
20 ).- -) #$ () *+ Uściślenie Prawa ruchu Rozważajac zagadnienie jednostajnie przyspieszonego ruchu obrotowego zakładaliśmy że moment siły jest stały i nie zależy od I. Jednak ciężarek też porusza się ruchem przyspieszonym: %'&,ma = Q N,Iε = rn Q - ciężar ciężarka, N - siła naprężenia nici. Eliminujac N = m(g a): Iε = r m(g rε) (I + mr 2 ) ε = mgr ε = mgr I + mr 2 = mgr I Bezwładność ciężarka efektywnie zwiększa moment bezwładności rotora: I = I + mr 2 Nigdy nie uzyskamy przyspieszenia większego niż ε max = g r A.F.Żarnecki Wykład XXIII 19
21 Porównanie Punkt materialny ruch postępowy Bryła sztywna ruch obrotowy (względem osi symetrii!) przesunięcie x kat obrotu φ prędkość v = d x dt prędkość katowa ω = d φ dt przyspieszenie a = d v dt przyspieszenie katowe ε = d ω dt masa m moment bezwładności I pęd p = m v moment pędu L = I ω układ izolowany p = const układ izolowany L = const A.F.Żarnecki Wykład XXIII 20
22 Porównanie Punkt materialny ruch postępowy Bryła sztywna ruch obrotowy (względem osi symetrii!) siła F moment siły M równania ruchu F = m a równania ruchu M = I ε praca W = d p dt = F F d x dl dt = M praca W = M d φ energia kinetyczna E k = 1 2 mv2 energia kinetyczna E k = 1 2 Iω2 Dla ruchu obrotowego względem ustalonej osi, pokrywajacej się z osia symetrii bryły!!! A.F.Żarnecki Wykład XXIII 21
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bryła sztywna. Fizyka I (Mechanika) Wykład IX: Bryła sztywna Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bak i żyroskop
Bryła sztywna Fizyka I (Mechanika) Wykład IX: Bryła sztywna Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bak i żyroskop Bryła sztywna Układ wielu ciał m 1 p 1 m 4 CM m VCM p 4 3 m 2
Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 9 1.X.016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Moment bezwładności - koło Krążek wokół osi symetrii: M dm
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)
Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa
Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.
Dynamika bryły sztywnej.. Moment siły. Moment pędu. Moment bezwładności. 171. Na cząstkę o masie kg znajdującą się w punkcie określonym wektorem r 5i 7j działa siła F 3i 4j. Wyznacz wektora momentu tej
Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop
Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt
WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Zasady dynamiki Isaak Newton (1686 r.)
Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Dynamika Newtonowska trzy zasady dynamiki
Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada
Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego
POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści
Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
będzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Układy cząstek i bryła sztywna. Matematyka Stosowana
Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Bryła sztywna Zadanie domowe
Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła
Siły oporu prędkość graniczna w spadku swobodnym
FIZYKA I Wykład III Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g
Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu
Ruch obrotowy 016 Spis treści Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu bezwładności Ruch obrotowo-postępowy
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
Zasada zachowania energii
Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?
III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Zasady zachowania. Fizyka I (Mechanika) Wykład VI:
Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu
Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności
Rozwiązania zadań egzaminacyjnych (egzamin poprawkowy) z Mechaniki i Szczególnej Teorii Względności Zadanie 1 (7 pkt) Cząstka o masie m i prędkości v skierowanej horyzontalnie wpada przez bocznąściankę
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Fizyka 1 (mechanika) AF14. Wykład 7
Fizyka 1 (mechanika) 1100-1AF14 Wykład 7 Jerzy Łusakowski 21.11.2016 Plan wykładu Praca i energia Siła a energia potencjalna Prędkość i przyspieszenie kątowe Moment siły i moment pędu Praca i energia Praca
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Spis treści. Wstęp Część I STATYKA
Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
Wykład 3 Ruch drgający Ruch falowy
Wykład 3 Ruch drgający Ruch falowy Dr Henryk Jankowski 2010/2011 WIMIR_studia niestacjonarne Mechanika Analityczna Czasoprzestrzeń zasada składania ruchów Galileo Galilei (1564-1642) - "Dialogi" (Florencja,
ĆWICZENIE 5. Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego. Kraków,
Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 5 Wyznaczanie przyśpieszenia ziemskiego przy pomocy wahadła matematycznego i fizycznego Kraków, 03.015 Spis treści:
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Mechanika bryły sztywnej
WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka
Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.
Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
Mechanika bryły sztywnej
WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.
Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.
Państwowa Wyższa Szkoła Zawodowa w Kaliszu
Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest
Zasada zachowania energii
Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F Praca i energia Praca
10 K A T E D R A FIZYKI STOSOWANEJ
10 K A T E D R A FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw. 10. Wyznaczanie momentu bezwładności brył nieregularnych Wprowadzenie Obserwowane w przyrodzie ruchy ciał można opisać * stosując podział
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
T =2 I Mgd, Md 2, I = I o
Kazimierz Pater, Nr indeksu: 999999 Wydział: Podstawowych Problemów Fizyki Kierunek: Fizyka Data: 99.99.9999 Temat: Wyznaczanie momentu bezwładności bryły sztywnej i sprawdzenie tw. Steinera Nr kat. ćwicz:
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie
ver ruch bryły
ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt
Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.
Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia
Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Bryła sztywna Przewodnik do rozwiązywania typowych zadań
Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,
Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr
Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny
1. Kinematyka 8 godzin
Plan wynikowy (propozycja) część 1 1. Kinematyka 8 godzin Wymagania Treści nauczania (tematy lekcji) Cele operacyjne podstawowe ponadpodstawowe Uczeń: konieczne podstawowe rozszerzające dopełniające Jak
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności
Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:
Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma
KINEMATYKA I DYNAMIKA ruchu obrotowego. Marian Talar
KINEMATYKA I DYNAMIKA ruchu obrotowego 10 listopada 2006 2 Kinematyka i dynamika ruchu po okręgu 1 Ruch jednostajny punktu materialnego po okręgu 1.1 Prędkość liniowa Ruch jednostajny punktu materialnego