G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

Wielkość: px
Rozpocząć pokaz od strony:

Download "G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ"

Transkrypt

1 Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r.

2 Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera (b), (c): Dyfrakcja Fraunhofera na pojedynczej szczelinie:

3 ds - element czoła fali w płaszczyźnie szczeliny w odległości s od środka. Fala cząstkowa od ds w środku szczeliny daje w P: de de s de s a ds ω ( t k) (sferyczna) a ds a ds Dla pary ( ± s) : de de s + de+ a ds ( ωt k( + ) ) ( ωt k ksθ ) s trzeba scałkować po s ( b, b ) [ ( ωt k ksθ ) + ( ωt k + ksθ )] a ds de ω ~stałe [ cos( ksθ ) ( t k) ] 3

4 b a E a ab ( ωt k) cos( ksθ ) ( ksθ ) k θ ( kbθ ) kbθ b ( ωt k) ( ωt k) Drgania wypadkowe harmoniczne, z amplitudą ds zależną od P (przez θ ). β Niech amplituda A A (*) β β kb θ A ab π b θ β - połowa różnicy faz wkładów od brzegów szczeliny. Natężenie: β ~ A A β Dla światła padającego pod kątem i : β π b i Dla β ; β ( + θ ) A β ; Minima dla maksimum główne. β mπ ( m ±, ±,... ) 4

5 Maksima poboczne dla z przecięć krzywych tg β β (*) β y tg β, y β ) Pierwsze minimum: ( θ b) θ b - odległość do ekranu, d - odległość (na ekranie) do pierwszego minimum szerokość prążka głównego: d b Minima: b θ ± m ; m,, 3... b, m θ b półsfera 5

6 Dyfrakcja na pojedynczej szczelinie wektorowo: W punkcie P : A A wszystkie fale cząstkowe w fazie. W pierwszym minimum: δ π między pierwszym a ostatnim fazorem ( δ δ ) A A P pomiędzy zerowym maksimum a pierwszym minimum: Niech δ π (pół okręgu) A π A ( A π A ) 6

7 Maksimum pierwszego rzędu: A A 3 π ( A πa) 3 Minimum drugiego rzędu: Maksimum drugiego rzędu: A A 5 π A ( A πa) 5 7

8 δ A A R A R δ R δ (w radianach) ( δ ) A δ A A δ δ Minima: równoodległe dla Maksima: d d δ tg ( m + ) π δ ( δ ) δ ± mπ m,,3... prawie w połowie między minimami przesunięte w stronę centrum, tym mniej, im wyższy rząd. 8

9 Szerokość połówkowa maksimum zerowego rzędu: δ ( δ ) δ b π θ δ.4 rd 8 (.4 rd ) π θ b.8 b θ π θ b Dyfrakcja Fraunhofera na okrągłym otworze: Dysk Airy ego Odległość kątowa minimów od środka: θ m a m a a-promień otworu 9

10 Zdolność rozdzielcza wg Rayleigha: Według Rayleigha najmniejsza odległość kątowa dwu obiektów, aby były rozróżnialne, musi wynosić: θ. D min θ min. D Podwójna szczelina: Jedna węższa szczelina Dwie węższe szczeliny Jedna szersza szczelina Dwie szersze szczeliny

11 Całkujemy d b do d + b : a A k( d + b) θ + k θ k ba β A cosγ ω β β γ π kb θ bθ π kd θ d θ zero: π, π,3π... ( d b) θ [ ( ω t k) ] ( t k) cos β β β zero: π,3π... γ dyfrakcja/interferencja

12 β i γ są zależne: π bθ bθ β π d θ d θ γ δ γ β β d b ( δ ) Dyfrakcja Fraunhofera na dwu szczelinach wektorowo: f ( θ )? α A π bθ A Między β π A A i [ π b( θ ) ] b( θ ) C C : π π aθ CE A A + A + A cos β ; A

13 A : A ( + cos β) Niech A A A cos [ π b( θ ) ] π cos b( θ ) aθ A A π Pojedyncza szczelina: [ π b( θ ) ] π a cos b( θ ) π D nterferencja z dwu źródeł: D π θ β [ π b( θ ) ] b( θ ) π θ cos a właściwości dyfrakcyjne pojedynczej szczeliny różnica faz, bo różna odległość od szczelin 3

14 Dyfrakcja na prostokątnym otworze: β θ π b ; ~ b β β Ω γ π θ i Ω mierzone w poziomie i pionie od prostej prostopadłej do szczeliny. γ γ Siatka dyfrakcyjna: Ae A iϕ a a in iδ iδ e ( + e + e +...) a iδ e inδ inδ ( e )( e ) cos N a iδ iδ ( e )( e ) cosδ ( ) cosα α δ δ 4

15 ( Nδ ) a ( δ ) γ Nγ A a δ γ π d θ a - natężenie od pojedynczej szczeliny: a A β π b θ β ; A s β β β " Nγ "! γ czynnik interferencyjny dla N szczelin Maksimum: tzn. ( N dla γ, π,π... d θ,,... m ) Minima: (dla N γ, π, π... pπ p, N, N - główne maksima) γ pπ N bez p mn (m-rząd) 5

16 Wiązka ukośna: δ ( i θ ) π π a + ( AB + BC) Maksimum: d ( i θ) m Dla + równanie siatki m : θ i, θ i - wzdłuż prostej d Odchylenie D ( i + θ) cos ( i θ) m D i + θ dla rzędu m: m sec a ( i θ) min D : θ i i n a 6

17 Dyfrakcja światła białego na siatce: (a) 4nm; (b) 5nm; (c) i Widmo,, 3 4 rzędu - dla danego rzędu: większe odchylenie dla większej długości fali ( θ m d ). Dyspersja siatki: dθ D d m d cosθ 7

18 Spektrometr: Zdolność rozdzielcza siatki: R - minimalna różnica długości fali, którą można rozdzielić przy długości fali. Obrazy dla sąsiednich długości fali mają spełniać kryterium Rayleigha. Maksimum główne rzędu m dla pierwszym minimum rzędu m dla : ( + ) + musi być w mn + mn m N Przykład: siatka linii, sr 589, 3 nm; Na, 6 nm 4 R Nm ( rząd) D Na : ,3 R,9 nm <, 6 nm 4 nm i 589,6 nm 8

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

9. Optyka Interferencja w cienkich warstwach. λ λ

9. Optyka Interferencja w cienkich warstwach. λ λ 9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,

Bardziej szczegółowo

18 K A T E D R A F I ZYKI STOSOWAN E J

18 K A T E D R A F I ZYKI STOSOWAN E J 18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem

Bardziej szczegółowo

Wykład 27 Dyfrakcja Fresnela i Fraunhofera

Wykład 27 Dyfrakcja Fresnela i Fraunhofera Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 13, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 13, 6.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie stosy

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 13, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 13, 16.11.017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 1 - przypomnienie

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ  2012/13 Optyka falowa dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale elektromagnetyczne 2 1.1. Model falowy światła...........................................

Bardziej szczegółowo

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła

Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]

przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz] ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie

Bardziej szczegółowo

WŁASNOŚCI FAL (c.d.)

WŁASNOŚCI FAL (c.d.) RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie

Bardziej szczegółowo

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

3. Materiały do manipulacji wiązkami świetlnymi

3. Materiały do manipulacji wiązkami świetlnymi 3. Materiały do manipulacji wiązkami świetlnymi Modulatory światła: wymuszona dwójłomność efekty magnetoi elektro-optyczne Np. modulatory natężenia (AM) substancja dwójłomna między skrzyż. polaryzatorami

Bardziej szczegółowo

Wyznaczanie rozmiarów przeszkód i szczelin za pomocą światła laserowego

Wyznaczanie rozmiarów przeszkód i szczelin za pomocą światła laserowego Ćwiczenie Equation Chapter 1 Section 1v.X3.1.16 Wyznaczanie rozmiarów przeszkód i szczelin za pomocą światła laserowego 1 Wstęp teoretyczny Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła

Bardziej szczegółowo

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie

Bardziej szczegółowo

POMIAR DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ I SPEKTROMETRU

POMIAR DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ I SPEKTROMETRU Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Irma Śledzińska 4 POMIAR DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ I SPEKTROMETRU 1. Podstawy fizyczne Fala elektromagnetyczna

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Wykład FIZYKA II. 8. Optyka falowa

Wykład FIZYKA II. 8. Optyka falowa Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html

Bardziej szczegółowo

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym

Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Rozważania dotyczące natury światła, doprowadziły do odkrycia i opisania wielu zjawisk związanych z jego rozchodzeniem

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1 Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu

Bardziej szczegółowo

2.6.3 Interferencja fal.

2.6.3 Interferencja fal. RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać

Bardziej szczegółowo

Interferencja. Dyfrakcja.

Interferencja. Dyfrakcja. Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Na ostatnim wykładzie

Na ostatnim wykładzie Na ostatnim wykładzie Falę elektromagnetyczną możemy przedstawić podając jej kierunek rozchodzenia się (promień) albo czoła fali (umowne powierzchnie, na których wartość natężenia pola elektrycznego jest

Bardziej szczegółowo

Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1

Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1 Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

13. Optyka Interferencja w cienkich warstwach. λ λ

13. Optyka Interferencja w cienkich warstwach. λ λ 3. Optyka 3.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni

Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych

Bardziej szczegółowo

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora . Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćwiczenie Nr 7 Temat: WYZNACZANIE STA ŁEJ SIATKI DYFRAKCYJNEJ I DŁUGOŚCI FALI ŚWIETLNEJ Warszawa 9 POMIARDŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Bardziej szczegółowo

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji: -- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE I. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali świetlnej, szerokości szczeliny

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

28 Optyka geometryczna i falowa

28 Optyka geometryczna i falowa MODUŁ IX Moduł IX- Optyka geometryczna i falowa 8 Optyka geometryczna i falowa 8. Wstęp Promieniowanie świetlne, o którym będziemy mówić w poniższych rozdziałach jest pewnym, niewielkim wycinkiem widma

Bardziej szczegółowo

Wykład VI Dalekie pole

Wykład VI Dalekie pole Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

XXXI. FALE ELEKTROMAGNETYCZNE

XXXI. FALE ELEKTROMAGNETYCZNE XXXI. FALE ELEKTROMAGNETYCZNE 31.1. Fale elektromagnetyczne Dotychczas poznane fale wymagają istnienia ośrodka materialnego, przez który lub wzdłuż którego mogą rozchodzić się. Fale elektromagnetyczne

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo