Siły oporu prędkość graniczna w spadku swobodnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Siły oporu prędkość graniczna w spadku swobodnym"

Transkrypt

1 FIZYKA I Wykład III

2 Mechanika: Pojęcia podstawowe dynamika i punktu historiamaterialnego (VI) Siły oporu prędkość graniczna w spadku swobodnym s = v 0 t + at v 0 = 0; a = g; s = h h = gt F o = k v F g = F o kv g = mg t = h g g = v k t F g = m g v k = gh v g = mg k k = ρ A C x

3 Układy Pojęcia nieinercjalne podstawowe (I) i historia Siły w układach nieinercjalnych (pozorne, bezwładności) Zjawiska fizyczne: odchylenie swobodnie spadających ciał od pionu (niewielkie) wahadło Foucault. Jeżeli uruchomimy wahadło na biegunie północnym, to przy każdym wahnięciu kulka odchyli się w prawo dla obserwatora związanego z Ziemią (dochodząc do bieguna na wschód, po minięciu bieguna na zachód). Dla niego płaszczyzna wahań będzie obracać się względem podłoża z prędkością kątową Ziemi, tylko, że w przeciwnym kierunku.

4 Układy Pojęcia nieinercjalne podstawowe (II) i historia Siły w układach nieinercjalnych (pozorne, bezwładności) Siła bezwładności w ruchu niejednostajnym prostoliniowym siła d Alemberta: Ruch jednostajny: Ԧv = const w układzie inercjalnym Hamowanie: a a w układzie inercjalnym w układzie nieinercjalnym F b Siła bezwładności w układzie nieinercjalnym F b = ma F b = m Ԧa

5 Układy Pojęcia nieinercjalne podstawowe (III) i historia Siły w układach nieinercjalnych (pozorne, bezwładności) Siła bezwładności w ruchu po okręgu siła odśrodkowa: v = ωr Obserwator w układzie inercjalnym ԦF dos = mω Ԧr = mv Ԧr r r Obserwator w układzie nieinercjalnym ԦF ods = mω Ԧr = mv r Ԧr r

6 Pojęcia podstawowe i historia Układy nieinercjalne (IV) Siły w układach nieinercjalnych (pozorne, bezwładności) Siła bezwładności w ruchu po okręgu siła odśrodkowa: dt d L ab g G R g G Y z t t sin ) ( cos P z P P X dt d l b g Q R g G Y

7 Układy Pojęcia nieinercjalne podstawowe (V) i historia Siły w układach nieinercjalnych (pozorne, bezwładności) Siła bezwładności w ruchu po okręgu siła odśrodkowa: v b = 85 km h = 3,7 m s v c = 6,7 m s F b = 4493 N = 5.6Q F c = 359 N = 0,45Q

8 Układy Pojęcia nieinercjalne podstawowe (VI) i historia Siły w układach nieinercjalnych (pozorne, bezwładności) Siła bezwładności podczas ruchu ciała w układzie obracającym się siła Coriolisa: Obserwator w układzie inercjalnym Obserwator w układzie nieinercjalnym a c = dr dφ = Ԧv ω dt dt F c = m Ԧv ω Efekty militarne: I wojna światowa: ostrzał artyleryjski Paryża z odległości 110 km znoszenie pocisków na wschód o 1,6 km II wojna światowa: bombardowanie Londynu rakietami V z odległości ok. 300 km odchylenie torów rakiet na wschód o 3,7 km podmywanie prawych brzegów rzek syberyjskich skręcanie pasatów (w prawo na półkuli północnej, w lewo na południowej) cyklony (sytuacja na półkuli północnej)

9 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (I) Środek masy R śm = σ i=1 N m i Ԧr i N = σ i=1 N m i Ԧr i m i M σ i=1 R śm = M 0 Ԧrdm M = 1 0 dm M M 1 0 Ԧrdm= M V 0 ԦrdV m ρ = lim V 0 V = dm dv

10 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (II) Oś obrotu i moment bezwładności m i ri r dm I N i1 r i m i I M r dm Moment bezwładności punktu materialnego lub bryły sztywnej pełni w ruchu obrotowym dokładnie tę samą rolę, jak masa tych ciał w ruchu postępowym. Moment bezwładności, który oznaczamy dużą literą I (od inertia), opisuje sposób rozkładu masy wokół osi obrotu.

11 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (III) Wyznaczanie momentów bezwładności

12 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (IV) Twierdzenie Steintera I = I 0 + ma I = I 0 + ma

13 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (V) Twierdzenie Steintera

14 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (VI)

15 Ruch Pojęcia obrotowy podstawowe bryły sztywnej i historia (V) h l R v v R E E k kc I mv I

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Fizyka 1(mechanika) AF14. Wykład 5

Fizyka 1(mechanika) AF14. Wykład 5 Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Opis ruchu obrotowego

Opis ruchu obrotowego Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają

Bardziej szczegółowo

Ziemia wirujący układ

Ziemia wirujący układ Siła Coriolisa 1 Ziemia wirujący układ Ziemia jest układem nieinercjalnym, poruszającym się w dość skomplikowany sposób. Aby stosować w takim układzie prawa dynamiki Newtona, do opisu zjawisk naleŝy wprowadzić

Bardziej szczegółowo

Dynamika: układy nieinercjalne

Dynamika: układy nieinercjalne Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Dynamika Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności Fizyka I (Mechanika) Prawa ruchu w układzie obracajacym się siła odśrodkowa siła Coriolissa Zasada zachowania pędu Zasada zachowania

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Układy cząstek i bryła sztywna. Matematyka Stosowana

Układy cząstek i bryła sztywna. Matematyka Stosowana Układy cząstek i bryła sztywna Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Niewiele wiemy zwykle o siłach Układy zachowawcze i dyssypatywne

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Składowe wektora y. Długość wektora y

Składowe wektora y. Długość wektora y FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

4. Ruch obrotowy Ziemi

4. Ruch obrotowy Ziemi 4. Ruch obrotowy Ziemi Jednym z pierwszych dowodów na ruch obrotowy Ziemi było doświadczenie, wykazujące ODCHYLENIE CIAŁ SWOBODNIE SPADAJĄCYCH Z WIEŻY: gdy ciało zostanie zrzucone z wysokiej wieży, to

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Bryła sztywna. Matematyka Stosowana

Bryła sztywna. Matematyka Stosowana Bryła sztywna Matematyka Stosowana Prawdziwe obiekty fizyczne Można przesuwać (punkt materialny też!) Można obracać (punktu materialnego nie!) Można ściskać, rozciągać, skręcać, wyginać, Mechanika ośrodków

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

Co ważniejsze siły. Wykład Inercjalne układy odniesienia. Transformacja Galileusza 5.2. Nieinercjalne układy odniesienia. Siły bezwładności.

Co ważniejsze siły. Wykład Inercjalne układy odniesienia. Transformacja Galileusza 5.2. Nieinercjalne układy odniesienia. Siły bezwładności. Co ważniejsze siły Piękne rzeczy wypracować można dzięki długiej i uciążliwej nauce, złe natomiast owocują same bez trudu. Demokryt z Abdery Wykład 5. 5.1. Inercjalne układy odniesienia. Transformacja

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!

Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną! Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego)

Zadania z mechaniki dla nanostudentów. Seria 3. (wykład prof. J. Majewskiego) Zadania z mechaniki dla nanostudentów Seria 3 (wykład prof J Majewskiego) Zadanie 1 Po równi pochyłej o kącie nachylenia do poziomu równym α zsuwa się klocek o masie m, na który działa siła oporu F = m

Bardziej szczegółowo

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 3 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Siły bezwładności Układy cząstek środek masy pęd i zasada zachowania pędu II zasada dynamiki Newtona dla układu

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Mechanika ruchu obrotowego

Mechanika ruchu obrotowego Mechanika ruchu obrotowego Fizyka I (Mechanika) Wykład X: Przypomnienie, ruch po okręgu Oscylator harmoniczny, wahadło Ruch w jednorodnym polu elektrycznym i magnetycznym Prawa ruchu w układzie obracajacym

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Zasady zachowania. Fizyka I (Mechanika) Wykład VI: Zasady zachowania Fizyka I (Mechanika) Wykład VI: Zasady zachowania energii i pędu Zasada zachowania momentu pędu Zderzenia elastyczne Układ środka masy Zasada zachowania pędu II zasada dynamiki Pęd układu

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa 3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne

Bardziej szczegółowo

Dynamika Newtonowska trzy zasady dynamiki

Dynamika Newtonowska trzy zasady dynamiki Dynamika Newtonowska trzy zasady dynamiki I. Zasada bezwładności Gdy działające siły równoważą się ciało fizyczne pozostaje w spoczynku lubporusza się ruchem prostoliniowym ze stałą prędkością. II. Zasada

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego POLTECHNKA ŚLĄSKA WYDZAŁ CHEMCZNY KATEDRA FZYKOCHEM TECHNOLOG POLMERÓW LABORATORUM Z FZYK Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego WYZNACZANE MOMENTÓW BEZWŁADNOŚC

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI: Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE

WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu układu punktów materialnych Układem punktów materialnych nazwiemy zbiór punktów w sensie

Bardziej szczegółowo

2.3. Pierwsza zasada dynamiki Newtona

2.3. Pierwsza zasada dynamiki Newtona Wykład 3.3. Pierwsza zasada dynamiki Newtona 15 X 1997 r. z przylądka Canaveral na Florydzie została wystrzelona sonda Cassini. W 004r. minęła Saturna i wszystko wskazuje na to, że będzie dalej kontynuować

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Oddziaływanie grawitacyjne

Oddziaływanie grawitacyjne Oddziaływanie grawitacyjne Przykład Obliczmy stosunek przyspieszenia dośrodkowego Księżyca w kierunku Ziemi do przyspieszenia grawitacyjnego przy powierzchni Ziemi. Przyspieszenie dośrodkowe w ruchu jednostajnym

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM 9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM Co to są kłady inercjalne i nieinercjalne? Układ inercjalny wyróŝnia się tym, Ŝe jeśli ciało w nim spoczywa lb porsza się rchem jednostajnym prostoliniowym,

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop

Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt

Bardziej szczegółowo

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu

Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu Ruch obrotowy 016 Spis treści Ciało sztywne i moment bezwładności Ciekawe przykłady ruchu obrotowego Dynamika ruchu obrotowego Kinematyka ruchu obrotowego Obliczanie momentu bezwładności Ruch obrotowo-postępowy

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr Podstawy fizyki Wykład 2 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie Opór Ruch jednostajny

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I Ćwiczenie 1: Badanie siły odśrodkowej. Opracowanie: mgr Tomasz Neumann Gdańsk, 2011 Projekt Przygotowanie i realizacja kierunku inżynieria biomedyczna - studia

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu Rozdział 2 Ruch i energia 2.1 Kinematyka punktu materialnego 2.1.1 Pojęcie ruchu. Punkt materialny. Równania ruchu Kinematyka jest działem mechaniki opisującym ruch ciał bez podawania jego przyczyn. Przez

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 2 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Janusz Andrzejewski 2 Dynamika Zasady dynamiki Newtona Układy inercjalne i nieinercjalne Siła Masa Przykłady sił Tarcie

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

MECHANIKA II. Dynamika układu punktów materialnych

MECHANIKA II. Dynamika układu punktów materialnych MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo