Siła sprężystości - przypomnienie
|
|
- Anna Żurawska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg
2 Prawo Hooke a Ciało m na idealnie gładkiej powierzchni (brak tarcia) Prawo Hooke a F = kx k > 0 F x D.C. Giancoli, Physics for Scientists & Engineers
3 Zakres stosowalności prawa Hooke a F zerwanie x a
4 Sytuacja dynamiczna ruch oscylacyjny wokół położenia równowagi Ruch oscylacyjny F = kx x ma = kx m d 2 x dt 2 = kx m!! x = kx!! x + k m x = 0 D.C. Giancoli, Physics for Scientists & Engineers równanie różniczkowe zwane równaniem oscylatora harmonicznego
5 Symulator sprężyny zawieszonej pionowo Siła grawitacja nie wpływa na drgania, przesuwa jedynie położenie równowagi wokół którego występują drgania. Ruchem drgającym rządzi jedynie siła sprężystości (jeżeli pominiemy opory).
6 Jak wygląda rozwiązanie równania oscylatora harmonicznego
7 Rozwiązanie równania oscylatora harmonicznego faza x = Acos( ωt +ϕ) amplituda (m) częstość kołowa (kątowa) (rad/s) - nie mylić z prędkością kątową! faza początkowa okres drgań: t = T = 2π ω częstotliwość drgań: f = 1 T = ω 2π
8 Rozwiązanie równania oscylatora harmonicznego położenie: prędkość: przyspieszenie: x = Acos( ωt +φ)!x = Aω sin( ωt +φ) x!! = Aω 2 cos( ωt +φ) = ω 2 x Podstawiając do równania oscylatora harmonicznego: ω 2 x + k m x = 0 ω = k m T = 2π m k
9 Oscylatora harmoniczny - przykład Warunki początkowe: x = 0, t = 0, v = -3 m s, k = 10, m = 0.1 kg v ω = k m = 10 rad s T = 2π m k s f = 1 T x 1.6 Hz t = 0, x = 0 0 = Acos( φ) cos( φ) = 0 φ = π 2 lub φ = 3π 2 t = 0, v = 3 3 = A ω sin( φ) A = 0.3 m D.C. Giancoli, Physics for Scientists & Engineers
10 Oscylator harmoniczny - przykład x = 0.3cos( 10t + π 2)
11 Oscylator harmoniczny - przykład v = 3sin( 10t + π 2) a = 30cos( 10t + π 2)
12 Rozważania energetyczne w ruchu harmonicznym prostym E całkowita E k E p
13 Energia potencjalna i kinetyczna w funkcji położenia energia kinetyczna energia potencjalna, studnia potencjału F s F s
14 Wahadło matematyczne y x θ l R θ Rsinθ Rcosθ m!! x = R(θ)sinθ = R(θ) x l, m!!y = R(θ)cosθ mg Przybliżenie małego kąta: (1) θ 1 rad, cosθ 1 (2)!!y 0 R = mg!! x + g l x = 0 mg Rozwiązanie: x = Acos( ωt +φ) równanie oscylatora harmonicznego! ω = g l T = 2π l g Symulacja:
15 Symulator wahadła
16 Tłumiony oscylator harmoniczny F s F opór Siła grawitacji nie ma wpływu na oscylacje przesuwa tylko położenie równowagi. Rolę odgrywa tylko siła oporu i sprężystości: F opór = bv F s = kx Rozwiązanie: Równanie ruchu: b m!! x = bv kx m!! x + b!x + kx = 0 ( ) x = A 0 e 2m t cos ωt +φ x mg obwiednia amplitudy Fizyka dla szkół wyższych Tom 1 by OpenStax
17 Oscylator harmoniczny tłumiony z siłą wymuszającą, zjawisko rezonansu F s F opór Dla oscylacji rolę odgrywają tylko siły oporu, sprężystości i wymuszającą: F opór = bv F s = kx F wym = F 0 sin ωt Rozwiązanie: ( ) (w obszarze stabilnych drgań) A Równanie ruchu: ( ) x = Acos ωt +φ ( ) m!! x = bv kx + F 0 cos ωt m!! x + b!x + kx F 0 cos ωt, gdzie rezonans A = F 0 ( ) = 0 ( ) + b 2 ω 2 m ω 2 ω 0 2 x mg F 0 cos( ωt) Obracająca sie tarcza napędzana silnikiem wymusza ruch oscylatora tłumionego. ω 0 = k m częstość drgań własnych układu (naturalna częstotliwość dla układ) Fizyka dla szkół wyższych Tom 1 by OpenStax ω 0 ω
18 Przykłady rezonansu w przyrodzie W 1940 r. most w Tacoma w stanie Waszyngton uległ zniszczeniu. Przyczyną był wiejący od oceanu zmienny wiatr, który choc słabszy od huraganu, wprowadził most w oscylacje przy częstotliwości rezonansowej. Gdy kable nośne uległy zerwaniu, współczynnik tłumienia spadł, co spowodowało jeszcze większa amplitude oscylacji i doprowadziło do zawalenia całej konstrukcji. Fizyka dla szkół wyższych Tom 1 by OpenStax W 1850 roku w Angers we Francji 487 żółnierzy maszerujących po moście wiszącym wprawiło go w drgania rezonansowe powodując zniszczenie mostu i śmierć 226 ludzi. H. C. Ohanian, J. T. Markert, Physics for Engineers and Scientists
19 Przykłady rezonansu w przyrodzie Szklany kielich pęka pod wpływem oscylacji rezonansowych wywołanych falą dźwiękową emitowaną przez trąbkę. By mocno rozhuśtać osobę na huśtawce trzeba pchać z odpowiednią częstotliwością. D.C. Giancoli, Physics for Scientists & Engineers
20 Przykłady rezonansu w przyrodzie Rezonans w obwodzie RLC
21 Przykłady rezonansu w przyrodzie Słońce emituje ciągłe spektrum światła każdemu kolorowi odpowiada inna częstotliwość fali elektromagnetycznej (E-M). Jeżeli częstotliwość fali E-M odpowiada częstotliwości drgań własnych molekuł (rezonans), następuje intensywny przekaz energii (absorpcja tej energii przez molekuły) cząstki zaczynają wibrować bardziej intensywnie z większą amplitudą Pobudzone cząsteczki często mogą wyemitować pobraną energię w postaci fal E-M (światła) o częstotliwościach rezonansowych
22 Przykłady rezonansu w przyrodzie
23 Suplement: Nie mylić częstości kołowej z prędkością kątową x = Acos( ωt +ϕ) częstość kołowa prędkość kątowa θ l θ l v t ω = 2π T = const nie ma nic wspólnego z θ! ω t = dθ dt = v t l
24 Suplement: Nie mylić częstości kołowej z prędkością kątową Tylko w przypadku ruchu jednostajnego po okręgu prędkość kątowa jest równa częstości kołowej!
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m
Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca
TEORIA DRGAŃ Program wykładu 2016
TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Wykład 6 Drgania. Siła harmoniczna
Wykład 6 Drgania Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym (periodycznym). Przemieszczenie cząstki w ruchu periodycznym można wyrazić za pomocą funkcji sinus albo
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Prosty oscylator harmoniczny
Ruch drgający i falowy Siła harmoniczna, drgania swobodne Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym. Przemieszczenie cząstki w ruchu periodycznym można zawsze wyrazić
Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
Fizyka Elementarna rozwiązania zadań. Część 20, 21 i 22 Przygotowanie: Grzegorz Brona,
Fizyka Elementarna rozwiązania zadań. Część 0, 1 i Przygotowanie: Grzegorz Brona, 0.1.008 Seria 0 Zadanie 1 Punkt Q porusza się w płaszczyźnie XOY po okręgu o promieniu A ze stałą prędkością kątową ω.
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.
Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,
Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Praca w języku potocznym
Praca w języku potocznym Kto wykonuje większą pracę? d d https://www.how-to-draw-funny-cartoons.com/cartoontable.html http://redwoodbark.org/016/09/1/text-heavy-hidden-weight-papertextbook-use/ https://www.freepik.com/free-photos-vectors/boy
Wykład 3 Ruch drgający Ruch falowy
Wykład 3 Ruch drgający Ruch falowy Dr Henryk Jankowski 2010/2011 WIMIR_studia niestacjonarne Mechanika Analityczna Czasoprzestrzeń zasada składania ruchów Galileo Galilei (1564-1642) - "Dialogi" (Florencja,
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad8 2012/2013, zima 1 Własności sprężyste ciał stałych naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała zależy od naprężenia
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.
Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
Zadanie domowe z drgań harmonicznych - rozwiązanie trzech wybranych zadań
- rozwiązanie trzech wybranych zadań Ireneusz Mańkowski I LO im. Stefana Żeromskiego w Lęborku ul. Dygasińskiego 14 28 kwietnia 2016 Wybrane zadania domowe 1 Zadanie 5.4.4 Rozwiązanie zadania 5.4.4 2 Zadanie
, to: Energia całkowita w ruchu harmonicznym prostym jest proporcjonalna do kwadratu amplitudy.
Wykład z fizyki Piotr Posmykiewicz 4 Podstawiając to do wzoru na energię kinetyczną: K = ma sin t + ( δ ) Podstawiając = k / m K = ka sin t ( + δ ) -5 Energia kinetyczna w ruchu harmonicznym prostym Energia
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad 8 017/018, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.
Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1
Drgania wymuszone - wahadło Pohla
Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania
Fale mechaniczne i akustyka
Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem
1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka
1 Drgania i fale 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Drgania i fale Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego
Ćwiczenie nr Wyznaczanie prędkości lotu pocisku na podstawie badania ruchu wahadła balistycznego. Wymagania do ćwiczenia 1. ynamika ruchu obrotowego.. rgania harmoniczne Literatura:. Halliday, R. Resnick,
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania
Zjawiska falowe. Wstępne wiadomości o drganiach i falach
Zjawiska falowe Wstępne wiadomości o drganiach i falach Ruch oscylacyjny, drgania harmoniczne proste Ruch, w którym położenie ciała x(t) powtarza się, nazywamy drganiem. W ruchu harmonicznym prostym położenie
Ruch oscylacyjny, drgania harmoniczne proste
Drgania i Fale Ruch oscylacyjny, drgania harmoniczne proste Ruch, w którym położenie ciała x(t) powtarza się, nazywamy drganiem. W ruchu harmonicznym prostym położenie ciała opisuje np. funkcja cosinus:
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.
Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
PRZYKŁADY RUCHU HARMONICZNEGO. = kx
RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Imię i nazwisko ucznia Data... Klasa...
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość
1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20)
Badanie drgań modelu cząsteczki czteroatomowej(m20) 37 1.5 Badanie drgań modelu cząsteczki czteroatomowej(m20) Celem ćwiczenia jest wyznaczenie widma drgań układu czterech wahadeł sprzężonych oraz wyznaczenie
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC
II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna
DRGANIA OSCYLATOR HARMONICZNY
DRGANIA OSCYLATOR HARMONICZNY wyklad 10 015/016, zima 1 Własności sprężyste ciał stałych Przedmiot: Fizyka naprężenie rozciągające naprężenie ścinające naprężenie objętościowe Względne odkształcenie ciała
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony
2. Rodzaje fal. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają prawom Newtona.
. Rodzaje fal Wykład 9 Fale mechaniczne, których przykładem są fale wzbudzone w długiej sprężynie, fale akustyczne, fale na wodzie. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
Drgania, dynamika nieliniowa i chaos deterministyczny. Katarzyna Weron
Drgania, dynamika nieliniowa i chaos deterministyczny Katarzyna Weron Polecana literatura Polecam też skrypt: David Morin, Waves http://www.people.fas.harvard.edu/~djmorin/waves Liniowość: Oscylator harmoniczny
Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne
(program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
1. Wahadło fizyczne o regulowanej płaszczyźnie. drgań. kilkukrotnie sprawdzając z jaką niepewnością statystyczną możemy mieć do czynienia. pomiarze.
. Wahadło fizyczne o regulowanej płaszczyźnie drgań.. Cel ćwiczenia Cel ćwiczenia: Analiza drgań harmonicznych na przykładzie wahadła fizycznego. Sprawdzenie relacji między okresem drgań obliczonym a okresem
1.1 Wahadło anharmoniczne(m5)
10 Mechanika 1.1 Wahadło anharmoniczne(m5) Celem ćwiczenia jest zbadanie drgań anharmonicznych wahadła fizycznego(zależność okresu drgań wahadła od amplitudy jego drgań, bilans energetyczny wahadła). Zagadnienia
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada
D103. Wahadła fizyczne sprzężone (przybliżenie małego kąta).
D3. Wahadła fizyczne sprzężone (przybliżenie małego kąta). Cel: Zbadanie przebiegu drgań dwóch wahadeł sprzężonych: zbadanie zależności częstości drgań wahadła prostego od jego momentu bezwładności, wyznaczenie
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
FIZYKA 2. Janusz Andrzejewski
FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Zadania z fizyki. Wydział Elektroniki
Zadania z fizyki Wydział Elektroniki 7 Ruch obrotowy, moment pędu. Drgania Uwaga: Zadania oznaczone przez (c) należy w pierwszej kolejności rozwiązać na ćwiczeniach. Zadania (lub ich części) opatrzone
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
II. RUCH DRGAJĄCY I FALOWY
Część II. RUCH DRGAJĄCY I FALOWY Wykład 6 RUCH DRGAJĄCY Opowiem ci o wiedzy. Uznać to, co znane, za znane, a to co nieznane, za nieznane, to jest wiedza. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.)
Drgania wokół nas. Maciej P. vel platon1984. moderator zadane.pl. 16 stycznia 2013
Drgania wokół nas Maciej P. vel platon1984 moderator zadane.pl 16 stycznia 2013 Maciej P. vel platon1984 (zadane.pl) Drgania wokół nas 16 stycznia 2013 1 / 21 Plan prezentacji 1 Co to są drgania 2 Jak
Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1
RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Egzamin z fizyki Informatyka Stosowana
Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem
1.1 Oscylator harmoniczny prosty
1 Wstęp 1.1 Oscylator harmoniczny prosty Oscylator harmoniczny prosty jest to każdy układ, którego ruch opisuje funkcja będąca rozwiązaniem równania różniczkowego postaci: d x(t) dt + ω 0x(t) = 0 (1) Rysunek
II. RUCH DRGAJĄCY I FALOWY
Część II. RUCH DRGAJĄCY I FALOWY Wykład 6 RUCH DRGAJĄCY Opowiem ci o wiedzy. Uznać to, co znane, za znane, a to co nieznane, za nieznane, to jest wiedza. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.)
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
3. Wahadło matematyczne
3. Wahadło matematyczne 3.1. Silą powodująca ruch wahadła. Omówimy teraz drugi przykład ruchu harmonicznego ruch wahadła matematycznego. Wahadłem matematycznym będziemy nazywali ciało o masie m i niewielkiej
Modelowanie obiektów opartych na sile sprężystości
Modelowanie obiektów opartych na sile sprężystości Jakub Jastrzębski Seventhtear j.jastrzebski@seventhtear.com Plan Prezentacji Prawo Hooke'a Sprężyna Drgania z tłumieniem Wahadło Lina Ciała miękkie Tkaniny
τ = wyp τ i ! F = wyp Równowaga statyczna
Równowaga statyczna Ciało sztywne znajduje się w równowadze statycznej tj. w bezruchu względem inercjalnego układu odniesienia - gdy wypadkowa siła oraz wypadkowy moment siły (liczony względem dowolnego
Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium
Fizyka Kolokwium Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 Fizyka w poprzednim odcinku Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM dt B Siła elektromotoryczna