Fale mechaniczne i akustyka
|
|
- Joanna Matysiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Fale mechaniczne i akustyka
2 Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem będzie poruszać się ciało decydują siły, które na to ciało oddziałują. Rozważmy kilka ważnych przykładów ruchu.
3 Ruch harmoniczny Przykładem takiego ruchu jest odbywający się bez tarcia ruch klocka przedstawionego na rysunku. Jeżeli x oznacza wychylenie klocka z położeni równowagi, to siła działająca na klocek jest równa F = kx gdzie k jest pewną stałą (charakteryzującą sprężynę).
4 Różniczkowe równanie ruchu (wynikające z II zasady dynamiki Newtona) ma postać d x m = kx dt Ogólna postać rozwiązania tego równania. x = A sin ( ω t + ϕ ) Zauważmy, że d x d dx d = = Aω cos( ω t + ϕ ) = dt dt dt dt = Aω sin ( ω t + ϕ ) = ω x
5 Stąd ω = k m Wartości stałych A i ϕ należy dobrać na podstawie innych informacji nt. ruchu (np.. Położenia i prędkości w chwili czasu t=0) Stałą A nazywamy amplitudą drgań. Stałą ϕ nazywamy fazą początkową drgań. Energia kinetyczna w ruchu harmonicznym wynosi: 1 dx 1 Ek = m = maω cos ( ω t + ϕ ) = dt 1 = ka cos ( ω t + ϕ ) Energia potencjalna jest równa 1 1 E p = kx = ka sin ( ω t + ϕ )
6 Energia całkowita w ruchu harmonicznym wynosi więc ka E=
7 Ruch harmoniczny tłumiony Przykładem takiego ruchu jest ruch przedstawionego na rysunku (krążek doczepiony do ciała o masie m jest zanurzony w cieczy). Jeżeli x oznacza wychylenie klocka z położeni równowagi, to siła działająca na klocek ze strony sprężyny jest równa F = kx gdzie k jest pewną (charakteryzującą sprężynę). stałą
8 Jeżeli siła hamująca klocek jest proporcjonalna do jego prędkości, to równanie ruch ma postać: d x dx m = kx b dt dt Rozwiązanie tego równania ma postać x = Ae β t sin ( ω ' t + ϕ ) gdzie b β = m ω '= k m b m
9 Amplituda w ruchu harmonicznym tłumionym jest funkcją czasu (linia przerywana)
10 Ruch harmoniczny wymuszony Weźmy oscylator harmoniczny tłumiony, dodatkową siła wymuszającą jego drgania: ale F = Fm cos( ω 0t ) Równanie ruchu takiego oscylatora jest następujące: d x dx m = kx b + Fm cos( ω 0t ) dt dt Rozwiązaniem tego równania jest Fm x= sin ( ω 0t ϕ G ) z
11 gdzie G= k m ω 0 + b ω 0 m oraz bω 0 ϕ = arccos G Zauważmy, że oscylator drga z taką częstotliwością, z jaką zmienia się siła wymuszająca. Amplituda drgań zależy od częstotliwości drgań własnych oscylatora, częstotliwości siły wymuszającej i współczynnika tłumienia b.
12 Zależność amplitudy drgań wymuszonych w zależności od stosunku częstotliwości siły wymuszającej do częstotliwości drgań własnych dla różnych stopni tłumienia drgań.
13 Fale mechaniczne
14 Rozpatrzmy ośrodek, w którym istnieje sprzężenie między jego sąsiednimi punktami takie, że zmiana stanu tego środka w danym punkcie powodowała podobną jego zmianę w punktach sąsiednich. Dodatkowo załóżmy, że siła działająca na dany punkt ośrodka jest proporcjonalna do wychylenia tego punktu z położenia równowagi (ośrodek jest sprężysty); właściwie jeżeli siła działająca na punkt wychylony z położenia równowagi o x jest równa F ( x ) = α x + β x + γ x to wystarczy, aby współczynniki β, γ, były dostatecznie małe, by móc zaniedbać wyrazy rzędów wyższych niż pierwszy. Dla x dominujący zawsze będzie wyraz αx.
15 Wyprowadźmy cząsteczkę ośrodka z położenia równowagi. Co się będzie działo dalej? W wyniku oddziaływania z sąsiednimi cząstkami ośrodka, zostaną one wyprowadzone z położenia równowagi. Stanie się to z pewnym opóźnieniem (ze względu na bezwładność ośrodka). Zaburzenie będzie wędrować przez ośrodek na skutek kolejnych oddziaływań. Szybkość tej wędrówki będzie tym większa, im mniejszy jest czas potrzebny na wyprowadzenie cząstki z położenia równowagi na skutek oddziaływań z sąsiednimi cząsteczkami. Zauważmy, że z wyprowadzeniem cząsteczki ośrodka z położenia równowagi wiąże się nadanie jej energii. Następuje więc przenoszenie energii między cząsteczkami bez przenoszenia masy. Jest to szczególna cecha ruchu falowego.
16 Ze względu na kierunek drgań cząsteczek wokół położenia równowagi w odniesieniu do kierunku rozchodzenia się fali rozróżniamy fale podłużne i poprzeczne. Z falą podłużną mamy do czynienia wtedy, gdy kierunek drgań jest równoległy do kierunku rozchodzenia się fali. Z falą poprzeczną mamy do czynienia wtedy, gdy kierunek drgań jest prostopadły do kierunku rozchodzenia się fali.
17 F = F sin ϕ Fϕ
18 Ze względu na kształt czoła fali (powierzchni o stałej fazie tzw. powierzchni fazowej) rozróżniamy w szczególności fale płaskie, walcowe i kuliste.
19 Jeżeli zaburzenie rozchodzące się w postaci fali jest okresowe, to falę nazywamy okresową. Fale nie muszą być okresowe. Jeżeli fala jest okresowa, to można zdefiniować jej długość jako odległość najbliższych powierzchni falowych o tej samej fazie.
20 Kilka faktów W przypadku, gdy zaburzenia są małe, dowolne fale opisywane są równaniem ψ ( x, y, z, t ) = 0 c t y z x gdzie c oznacza prędkość fali. Jest to równanie liniowe, więc suma dowolnych rozwiązań tego równania jest również jego rozwiązaniem. Szczególnym przypadkiem fal są fale sinusoidalne ( ) () r t ψ r, t = A r sin π λ T
21 Każdą falę można przedstawić jako superpozycję fal sinusoidalnych. O tym, jaka będzie fala rozchodząca się w ośrodku decyduje źródło fali oraz właściwości ośrodka.
22 Fala stojąca Rozpatrzmy superpozycję dwóch fal płaskich o tej samej amplitudzie i częstotliwości, ale o przeciwnych kierunkach rozchodzenia się: t z xst = x1 + x = X 0 sin π + X 0 sin π T λ π z = X 0 cos sin ω t λ t z + T λ Fala stojąca może powstać np. w wyniku superpozycji fali padającej i tej samej fali odbitej na granicy ośrodków. Nie przenosi ona energii. Co λ/ występują tzw. węzły fali stojącej (punkty, w których nie zachodzą drgania). Co λ/ występują tzw. strzałki fali stojącej (punkty, w których zachodzą drgania o maksymalnej amplitudzie).
23 Prędkość fali w powietrzu Rozpatrzmy fale dźwiękowe wytwarzane w rurze przez drgający tłok:
24 Dla elementu płynu wchodzącego w strefę zagęszczenia mamy z II zasady dynamiki Newtona: F = ( p + p ) S ps = ps = ma gdzie S jest polem przekroju rury. Wybierzmy rozmiar l rozpatrywanego elementu na zewnątrz strefy zagęszczenia w taki sposób, by l = v t
25 Mamy: v v S p = ma = ρ 0 S l = ρ 0 Sv t t t p = ρ 0 v v v p = ρ 0v v Płyn, który w punkcie P zajmował objętość V = Sv t po wejściu do strefy zgęszczenia zostaje ściśnięty o V = S v t
26 Stąd mamy V p ρ 0v = = B V gdzie B oznacza tzw. moduł ściśliwości. Ostatecznie v= B ρ0 Jeżeli fala rozchodzi się w gazie, to dodatkowo mamy (bo gaz zostanie ściśnięty na tak krótki czas, że nie zdązy wymienić ciepła z otoczeniem) pv κ = const. gdzie κ = c p cv
27 W takim przypadku const. p= Vκ const p = κ κ +1 V V p const. = κ κ +1 V V V p const. =κ = κp κ V V gdzie p oznacza gazu niezaburzonego
28 Ostatecznie mamy: v= κp ρ0 Prędkości fal w innych ośrodkach: - Fale podłużne w ciałach stałych: v= E ρ gdzie E moduł Younga, ρ gęstość ciała - Fale poprzeczne w napiętej strunie: v= F m1 gdzie F siła przyłożona do struny, m1 masa przypadająca na jednostkę długości struny
29 Akustyka
30 Natężenie fali dźwiękowej Fale rozchodzące się w powietrzu są falami podłużnymi. Są to fale ciśnieniowe. Po dotarciu do ludzkiego ucha wywołują wrażenie dźwięku o ile ich częstotliwość leży w przedziale od 16 Hz do 0 khz. W akustyce definiuje się wielkość nazywaną natężeniem dźwięku. Jest to moc przenoszona przez falę akustyczną przez jednostkową powierzchnię prostopadłą do kierunku rozchodzenia się fali: P I= S Dla fali kulistej 1 I~ r
31 Czułość ucha jest zależna od częstotliwości dźwięku: I0=10-1 W/m nazywamy natężeniem poziomu zerowego.
32 Subiektywne natężenie dźwięku I Λ = 10 log I0 Jednostką względnego natężenia dźwięku (w ten sposób zdefiniowanego) jest decybel. Przyjęcie takiej jednostki jest skutkiem tego, że zmiana intensywności subiektywnego wrażenia dźwiękowego wywołanego przez dwa dźwięki jest proporcjonalna do logarytmu stosunku natężeń porównywanych dźwięków (prawo Webera i Fechnera)
33 Zjawiska akustyczne Echo - dwu lub kilkukrotne słyszenie tego samego dźwięku w wyniku odbić. Pogłos podobne do echa, ale ze względu na małe opóźnienia docierających dźwięków ucho nie potrafi ich rozróżnić, a jednocześnie echo wyczuwa już istnienie odbić. Występuje zwykle w pomieszczeniach zamkniętych. Powoduje zwykle subiektywne wrażenie przedłużenie czasu trwania dźwięku. Dudnienia powstają na skutek nakładania się fal o zbliżonych częstotliwościach. Weźmy dwie fale x1 = X 0 sin ( ω 1t kz ) x = X 0 sin ( ω t kz )
34 W wyniku ich nałożenia otrzymujemy ω1 ω ω1+ ω xd = X 0 cos t sin t kz Amplituda dudnień: X 0d ω1 ω = X 0 cos t Efekt Dopplera. Niech źródło dźwięku o częstotliwości f porusza się ze stałą prędkością u zbliżając się do obserwatora. Częstotliwość dźwięku odbierana przez obserwatora będzie równa c c c c f '= = = = f λ' λ u λf u c u f f f
35 Jeżeli źródło spoczywa, a obserwator zbliża się do źródła z prędkością v, to mamy: c+ v c+ v c+ v f '= = = f c λ c f Łącząc oba przypadki otrzymujemy c+ v f '= f c u
36 Powstanie fali uderzeniowej (fali balistycznej). Zachodzi, gdy źródło dźwięku porusza się z prędkością większą od prędkości dźwięku.
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne
Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1
RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie
PRZYKŁADY RUCHU HARMONICZNEGO. = kx
RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera
Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka
Dźwięk. Cechy dźwięku, natura światła
Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000
Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.
RUCH FALOWY Wyklad 9 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe, mikrofale,
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)
Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)
RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski
Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się
Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ
Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe
Drgania i fale sprężyste. 1/24
Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz
Podstawy fizyki sezon 1 VIII. Ruch falowy
Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
2. Rodzaje fal. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają prawom Newtona.
. Rodzaje fal Wykład 9 Fale mechaniczne, których przykładem są fale wzbudzone w długiej sprężynie, fale akustyczne, fale na wodzie. Fale te mogą rozchodzić się tylko w jakimś ośrodku materialnym i podlegają
5.1. Powstawanie i rozchodzenie się fal mechanicznych.
5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia
Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V
2.6.3 Interferencja fal.
RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać
Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.
Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład
1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka
1 Drgania i fale 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Drgania i fale Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy
Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.
Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana
Wykład 3: Jak wygląda dźwięk? Katarzyna Weron Matematyka Stosowana Fala dźwiękowa Podłużna fala rozchodząca się w ośrodku Powietrzu Wodzie Ciele stałym (słyszycie czasem sąsiadów?) Prędkość dźwięku: stal
1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?
1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Prosty oscylator harmoniczny
Ruch drgający i falowy Siła harmoniczna, drgania swobodne Ruch, który powtarza się w regularnych odstępach czasu, nazywamy ruchem okresowym. Przemieszczenie cząstki w ruchu periodycznym można zawsze wyrazić
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE
W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),
Fale mechaniczne Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Ruch falowy jest bardzo rozpowszechniony w przyrodzie. Na co dzień doświadczamy obecności fal dźwiękowych i fal świetlnych. Powszechnie też wykorzystujemy
WŁASNOŚCI FAL (c.d.)
RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY
ĆWICZENIE 103 WYZNACZENIE GĘSTOŚCI MATERIAŁU STRUNY Cel ćwiczenia: Wyznaczenie gęstości materiału, z którego jest wykonana badana struna. Zagadnienia: definicja fali, parametry opisujące falę (położenie
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
FALE DŹWIĘKOWE. fale podłużne. Acos sin
ELEMENTY AKUSTYKI Fale dźwiękowe. Prędkość dźwięku. Charakter dźwięku. Wysokość, barwa i natężenie dźwięku. Poziom natężenia i głośności. Dudnienia. Zjawisko Dopplera. Fala dziobowa. Fala uderzeniowa.
Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie.
Fale dźwiękowe wstęp Falami dźwiękowymi nazywamy fale podłużne, które rozchodzą się w ośrodkach sprężystych Ludzkie ucho rozpoznaje fale dźwiękowe o częstotliwości od około 20 Hz do około 20 khz (zakres
Rys Ruch harmoniczny jako rzut ruchu po okręgu
3. DRGANIA I FALE 3.1. Ruch harmoniczny W szkole poznajemy ruch harmoniczny w trakcie analizy ruchu jednostajnego po okręgu jako rzut na prostą (rys. 3.1). Tak jest w istocie, poniewaŝ ruch po okręgu to
FALE W OŚRODKACH SPRĘZYSTYCH
ALE W OŚRODKACH SPRĘZYSTYCH PRZYKŁADY RUCHU ALOWEGO Zjawisko rozchodzenia się fal spotykamy powszechnie. Przykładami są fale na wodzie, fale dźwiękowe, poruszający się front przewracających się kostek
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH
Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.
POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH
Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Ć W I C Z E N I E N R M-7
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M-7 BADANIE CZĘSTOŚCI DRGAŃ WŁASNYCH ORAZ WYZNACZANIE PRĘDKOŚCI
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i
1 S t r o n a 6. Prędkośd rozchodzenia się sprężystych fal podłużnych w ciałach stałych, cieczach i gazach. Prawo Hooke a: Siła sprężystości: F Xsp = k. 0) Co do wartości bezwzględnej jest ona równa (lub
WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE
W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ
BADANIE FAL AKUSTYCZNYCH
ĆWICZENIE 9 BADANIE FAL AKUSTYCZNYCH Wprowadzenie. Rozchodzenie się zaburzeń elementów masy w jakimś ośrodku sprężystym nazywamy falą sprężystą. W każdym rzeczywistym ośrodku sprężystym cząsteczki powiązane
- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)
37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd
obszary o większej wartości zaburzenia mają ciemny odcień, a
Co to jest fala? Falę stanowi rozchodzące się w ośrodku zaburzenie, zmiany jakiejś wielkości (powtarzające się wielokrotnie i cyklicznie zmieniające swoje wychylenie). Fala pojawia się w ośrodkach, których
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Wykład 1: Fale wstęp. Drgania Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 1: Fale wstęp. Drgania Katarzyna Weron WPPT, Matematyka Stosowana Sposoby komunikacji Chcesz się skontaktować z przyjacielem Wysyłasz list? Wykorzystujesz cząstki Telefonujesz? Wykorzystujesz fale
LIGA klasa 2 - styczeń 2017
LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od
Fale cz. 1. dr inż. Ireneusz Owczarek CMF PŁ 2012/13
Fale cz. 1 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Plan wykładu Spis treści 1. Procesy falowe 1.1. Klasyfikacja fal..............................................
5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Światło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
ψ przedstawia zależność
Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi
Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2
Testy 3 40. Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2 41. Balonik o masie 10 g spada ze stałą prędkością w powietrzu. Jaka jest siła wyporu? Jaka jest średnica
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.
1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.
Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku
Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.
Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala
Rozdział 9. Fale w ośrodkach sprężystych
Rozdział 9. Fale w ośrodkach sprężystych 2017 Spis treści Fale mechaniczne Rozchodzenie się fal w przestrzeni Prędkość fal i równanie falowe Przenoszenie energii przez fale Interferencja fal i fale stojące
Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.
RUCH FALOWY Wyklad 4 2012, lato 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe,
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.
Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.
RUCH FALOWY 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe, mikrofale, światło),
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
AKUSTYKA. Matura 2007
Matura 007 AKUSTYKA Zadanie 3. Wózek (1 pkt) Wózek z nadajnikiem fal ultradźwiękowych, spoczywający w chwili t = 0, zaczyna oddalać się od nieruchomego odbiornika ruchem jednostajnie przyspieszonym. odbiornik
Wyznaczanie prędkości dźwięku
Wyznaczanie prędkości dźwięku OPRACOWANIE Jak można wyznaczyć prędkość dźwięku? Wyznaczanie prędkości dźwięku metody doświadczalne. Prędkość dźwięku w powietrzu wynosi około 330 m/s. Dokładniejsze jej
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
Przedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki
GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych
Wykład 2: Od drgań do fali Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 2: Od drgań do fali Katarzyna Weron WPPT, Mateatyka Stosowana Drgania układów o dwóch stopniach swobody k κ k Równania Newtona: Dodaj równania: x 1 x 2 (x 1 + x 2 ) = k(x 1 +x 2 ) x 1 = kx 1 κ x
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
1.1 Oscylator harmoniczny prosty
1 Wstęp 1.1 Oscylator harmoniczny prosty Oscylator harmoniczny prosty jest to każdy układ, którego ruch opisuje funkcja będąca rozwiązaniem równania różniczkowego postaci: d x(t) dt + ω 0x(t) = 0 (1) Rysunek
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ
ELEKTROAKUSTYKA LABORATORIUM ETE8300L ĆWICZENIE NR 4 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ 1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą pomiaru współczynnika pochłaniania
Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m
Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
11. Ruch drgający i fale mechaniczne zadania z arkusza I 11.6 11.1 11.7 11.8 11.9 11.2 11.10 11.3 11.4 11.11 11.12 11.5 11. Ruch drgający i fale mechaniczne - 1 - 11.13 11.22 11.14 11.15 11.16 11.17 11.23
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,
Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje