RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW
|
|
- Dominik Zalewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kopozt RÓWNANIA FIZYCZN DLA KOMPOZYTÓW Równania fizczne dla ateriałów anizotropowch Równania fizczne liniowej teorii sprężstości ożna zapisać w ogólnej postaci ij ijkl kl lub po odwróceniu ij ijkl kl gdzie ijkl są eleentai acierz sztwności, a ijkl eleentai acierz podatności. Zapis zwężon, zwan też notacją Voigta ZAPI TNOROWY ZAPI VOIGTA Naprężenia Odkształcenia Naprężenia Odkształcenia τ γ τ γ τ γ Tabela. Konwencja zapisu tensorowego i zwężonego naprężeń i odkształceń. Równania fizczne ają w notacji zwężonej następujące postaci i ij j i ij j i, j,,... Macierze ij i ij ają w ogóln przpadku ateriału liniowo sprężstego po eleentów składowch, ale z analiz energii sprężstej wnika, że liczba składowch niezależnch wnosi.. Równania fizczne dla ateriałów ortotropowch Istotn z punktu widzenia echaniki kopoztów jest przpadek setrii ortotropowej, gdż większość kopoztów warstwowch o jednokierunkow zbrojeniu zalicza się do tej klas. Rs.. Płaszczzn setrii ortotropowej
2 Kopozt Ortotropia jest taki szczególn przpadkie anizotropii, dla którego w głównch osiach ateriałowch nie wstępuje sprzężenie naprężeń noralnch z odkształceniai stczni, naprężeń stcznch z odkształceniai noralni, ani też naprężeń stcznch z odkształceniai stczni odpowiadająci różn płaszczzno. Mniejsza jest też niż dla anizotropii liczba niezależnch składowch acierz sztwności, gdż wnosi tlko 9. Związki fizczne dla warstw ortotropowej w płaski stanie naprężenia Konfiguracja osiowa Konstrukcje wkonane z kopoztów lainatowch są generalnie konstrukcjai dwuwiarowi, toteż wstępuje w nich płaski stan naprężenia. Rs.. Konfiguracja osiowa warstw jednokierunkowo zbrojonej. Dla płaskiego stanu naprężenia w płaszczźnie (, ), określonego warunkie związki fizczne upraszczają się do postaci Macierz [ ij ] to tzw. zredukowaną acierzą sztwności W funkcji stałch inżnierskich równania fizczne ają postaci: G ] [ G
3 Kopozt Ilość niezależnch stałch w acierzach sztwności, podatności i stałch inżnierskich zniejsza się do czterech, w porównaniu z dziewięcioa dla ogólnego przpadku ortotropii. Niezależne stałe inżnierskie, standardowo podawane dla danego tpu ateriału kopoztowego to G tzw. podłużn oduł Younga tzw. poprzeczn oduł Younga oduł ścinania tzw. większ współcznnik Poissona. Piąta stała inżnierska jest stałą zależną od pozostałch stałch i wnosi: tzw. niejsz współcznnik Poissona MATRIAŁ MODUŁ PODŁUŻNY [GPa] TAŁ INŻYNIRKI MODUŁ POPRZCZNY [GPa] MODUŁ ŚCINANIA G [GPa] WPÓŁCZYNNIK POIONA szkło /epoksd...8 szkło /epoksd grafit/epoksd WW **..8. grafit/epoksd WM **.9.8. grafit/epoksd UWM ** Tora T/epoksd..8. Kevlar boron/epo **) - skrót oznaczają: WW - kopozt wsoko-wtrzał, WM - wsoko-odułow, UWM - ultrawsoko-odułow TABLA. tałe inżnierskie dla tpowch kopoztów jednokierunkowo zbrojonch. Związki fizczne dla warstw ortotropowej w płaski stanie naprężenia Konfiguracja nieosiowa,, warstwa +θ konfiguracja osiowa konfiguracja nieosiowa (, ) - główne osie ateriałowe warstw (, ) - dowoln układ odniesienia Rs.. Konfiguracja osiowa i nieosiowa warstw kopoztu. Macierz sztwności warstw w konfiguracji nieosiowej (transforowana acierz sztwności) Związek fizczn w konfiguracji nieosiowej a postać τ γ
4 Kopozt tosując procedurę transforacjną Tsai a i Pagano otrzuje się U U U cos θ cos θ U - cos θ cos θ U - cos θ U - cos θ / sin θ sin θ / sin θ - sin θ TABLA. Wzor transforacjne Tsai a i Pagano dla acierz sztwności dla przkładu U + U cos θ+ U cos θ U 8 ( ) U ( ) U 8 (+ ) U 8 (+ + ) U 8 (+ + ) Transforacja stałch inżnierskich Obliczając transforowaną acierz podatności (poprzez odwrócenie transforowanej acierz sztwności) ( ) ( ) ( ) ( ) ( ) ( ) + i wkorzstując związki tej acierz ze stałi inżnierskii G η, η, otrzuje się stałe inżnierskie dla warstw nieosiowej.
5 Kopozt Przkład Wznaczć zależność stałch inżnierskich od kąta, jaki tworzą główne osie ateriałowe (, ) z układe odniesienia (, ) dla pojednczej warstw, jednokierunkowo zbrojonej wkonanej z wsoko-odułowego kopoztu grafit/epoksd. tałe ateriałowe wnoszą: GPa,.9 GPa, G.8 GPa,.. α Zależność stałch inżnierskich od kąta α przedstawiono na rs. i. bezwiarowe oduł sprężstości 8 8 / / 8 kąt Rs.. Zależność bezwiarowch odułów Younga / i / od kąta α. BZWYMIAROWY MODUŁ ŚCINANIA I WPÓŁCZYNNIK POION'A...8. G / G. Ni / Ni. 8 KĄT Rs.. Zależność bezwiarowego odułu ścinania G / G i współcznnika Poisson'a / od kąta α.
ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2.
ROZDZIAŁ J. German: PODTAWY MCHANIKI KOMPOZYTÓW WŁÓKNITYCH ROZDZIAŁ RÓWNANIA FIZYCZN DLA KOMPOZYTÓW KONFIGURACJA OIOWA W rozdziale tym zostaną przedstawione równania fizyczne dla materiałów anizotropowych,
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne
ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP
ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Przykład 6.3. Uogólnione prawo Hooke a
Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W
6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
WYTRZYMAŁOŚĆ KOMPOZYTÓW WARSTWOWYCH
Dr inż. Janusz German Politechnika Krakowska Insttut Mechaniki Budowli Katedra Wtrzmałości Materiałów WYTRZYMAŁOŚĆ KOMPOZYTÓW WARSTWOWYCH Zagadnienia wtrzmałościowe w przpadku materiałów kompoztowch, a
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4
ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?
Ć w i c z e n i e K 1
kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:
RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH
Część 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5. RÓWNANIA FIZYCZNE DLA CIAŁ LINIOWO - SPRĘŻYSTYCH 5.. ZWIĄZKI MIĘDZY ODKSZTAŁCENIAMI I GŁÓWNYMI NAPRĘŻENIAMI W każdym materiale konstrukcyjnym
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
σ x σ y σ z σ z, Adam Bodnar: Wytrzymałość Materiałów. Równania fizyczne.
Ada Bodnar: Wtrałość Materiałów. Równania ficne. 7. RÓWNANIA FIZCZN 7.. Zwiąki ięd stane odkstałcenia i naprężenia. I i II postać równań Hooke a Zależność deforacji brł od obciążeń ewnętrnch naruca istnienie
ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.
Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
TENSOMETRIA ZARYS TEORETYCZNY
TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba
( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.
Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A
PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej
Wykład Analiza jakościowa równań różniczkowych
Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez
Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
mgr inż. Paweł Szeptyński Podstawy wytrzymałości materiałów i mechaniki układów prętowych 07 Teoria stanu naprężenia i odkształcenia
NAPRĘŻENIE Teoria stanu naprężenia i odkształcenia Naprężeniem nazywamy gęstość powierzchniowych sił wewnętrznych obrazujących oddziaływanie jednej części ciała na drugą, po dokonaniu jego myślowego rozcięcia.
Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska
Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.
1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ
.. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH
dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
2. Elementy rozciągane.
Część 1 1. Element rozciągane. ośność pręta rozciąganego osiowo: - dla przekroju nieosłabionego otworami Rt = f d - dla przekroju osłabionego otworami Rt = ψ f d gdzie: - dla elementu pojedńczego (ścianki,
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid
Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)
euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)
Modelowanie w ME- Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).
MES1 10 S/MCS Modelowanie w ME- Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analiz Zakładam, że model już jest uproszczon, zdefiniowane są materiał, obciążenie i umocowanie (krok
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek
Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki
Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji
Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
ROZWIĄZANIE PROBLEMU NIELINIOWEGO
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja
Badania zginanych belek
Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Podstawy opisu dynamiki punktu materialnego
Podstaw opisu dnaiki punktu aterialnego Ruch ałego obiektu, któr oże przbliżać koncepcjnie jako punkt obdarzon asą (tzw. punkt aterialn) będzie opiswać podając wektor położenia tego punktu jako funkcję
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:
Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I
Imperfekcje globalne i lokalne
Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
Macierze normalne. D : Dowolną macierz kwadratową można zapisać w postaci A = B + ic gdzie ( ) B = A + A B = A + A = ( A + A)
Macierze normalne Twierdzenie: Macierz można zdiagonalizować za pomocą unitarnej transformacji podobieństwa wted i tlko wted gd jest normalna (AA A A). ( ) D : Dowolną macierz kwadratową można zapisać
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET
Użtkownik: Biuro Inżnierskie SPECBUD Autor: mgr inż. Jan Kowalski Ttuł: Poz.4.1. Element żelbetowe Przkład 1 - Obliczenia przkładowe programu KEŻ Belka - zginanie - 1 - Kalkulator Elementów Żelbetowch
Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia
Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sgnałów biomedcznch Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wkład XIII Dstrbucje czasowo częstotliwościowe
REDUKCJA PŁASKIEGO UKŁADU SIŁ
olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C
Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka
x y x y y 2 1-1
Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().
ROZDZIAŁ 7 ROZDZIAŁ 7
ROZDZIAŁ 7 ROZDZIAŁ 7 33 J. Geran: PODSTAWY MECHANIKI KOMPOZYTÓW WŁÓKNISTYCH ROZDZIAŁ 7 MIKROMECHANIKA KOMPOZYTÓW W dotychczasowej analizie ateriałów kopozytowych, obejującej.in. budowę acierzy sztywności
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
Przestrzenie liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.
ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie
Podejmowanie decyzji w warunkach niepełnej informacji. Tadeusz Trzaskalik
Podejmowanie deczji w warunkach niepełnej informacji Tadeusz Trzaskalik 5.. Wprowadzenie Słowa kluczowe Niepełna informacja Stan natur Macierz wpłat Podejmowanie deczji w warunkach rzka Podejmowanie deczji
Podstawy wytrzymałości materiałów
Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja
PLASTYCZNOŚĆ W UJĘCIU KOMPUTEROWYM
Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2013/2014 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Sprężystość
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża
Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
BADANIE TENSOMETRÓW REZYSTANCYJNYCH
. Ce ćwiczenia BADANIE TENSOMETÓW EZYSTANCYJNYCH Ceem ćwiczenia jest wznaczenie charakterstki statcznej tensometru rezstancjnego, jego podstawowch parametrów oraz błędów nieiniowości i błędów temperaturowch
17. 17. Modele materiałów
7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie
Definicja wartości bezwzględnej. x < x y. x =
1.9. WARTOŚĆ BEZWZGLĘDNA Definicja wartości bezwzględnej... gd... 0 =... gd... < 0 Własności wartości bezwzględnej 0 = = = n a n = a, gd n jest liczbą parzstą Przkład 1.9.1. Oblicz: a) b) c) 1 d) 0 e)
w stanie granicznym nośności
Wytrzyałość ateriałów Hipotezy wytrzyałościowe 1 Podstawy wyiarowania w stanie graniczny nośności Wyiarowanie konstrukcji polega na doborze wyiarów i kształtu przekrojów eleentów. Podstawą doboru jest
1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowazenie Wyprowazone w rozziałach.3 (strona statyczna i.4 (strona geoetryczna równania (.3.36 i (.4. są niezależne o rozaju ciała aterialnego, które oże
Badanie liniowego efektu elektrooptycznego
Badanie liniowego efektu elektrooptcznego Wstęp Rozwój telekomunikacji optcznej oraz techniki laserowej spowodował zapotrzebowanie na materiał i urządzenia, za pomocą którch można sterować wiązką świetlną.
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Zintegrowany analizator widma. (c) Sergiusz Patela Zintegrowany Analizator Widma 1
Zintegrowan analizator widma (c) Sergiusz Patela 998-003 Zintegrowan Analizator Widma Drakcja Bragga i Ramana-Natha ugięt sinθ B λ o ΛN e Eektwność oddziałwania: η sin η0 Gdzie: η P akust p 0. ijkl (c)
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Ścinanie betonu wg PN-EN (EC2)
Ścinanie betonu wg PN-EN 992-2 (EC2) (Opracowanie: dr inż. Dariusz Sobala, v. 200428) Maksymalna siła ścinająca: V Ed 4000 kn Przekrój nie wymagający zbrojenia na ścianie: W elementach, które z obliczeniowego
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
14. Grupy, pierścienie i ciała.
4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.
UOGÓLNIONE PRAWO HOOKE A
UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej
Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.
Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:
POLARYZACJA ŚWIATŁA OPISY MATEMATYCZNE
POLARYZACJA ŚWIATŁA OPISY MATMATYCZN prof. dr hab. inż. Krzsztof Patorski Analiza propagacji światła w ośrodku anizotropowm, którego właściwości zależą od kierunku propagacji wiązki, wmaga wprowadzenia
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
Obliczanie indukcyjności cewek
napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
pok. 364 Konsultacje: piątek Literatura:
04-0-0 rof. dr hab. inż. JROSŁW RZEWŁÓCKI pok. 364 Konsutacje: piątek 5-3 00 Literatura: Bieewicz E.: Wtrzmałość materiałów. Dąg Z., Jakubowicz., Orłoś Z.: Wtrzmałość materiałów. Koendowicz T.: echanika
II. OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE
II. OBLICZENIA STATYCZNO-WYTRZYMAŁOŚCIOWE 1. KONSTRUKCJA STALOWA SZYBU WINDY 1.1. ZESTAWIENIE OBCIĄŻEŃ 1.1.1. Obciążenie stałe wg PN-82/B-02001 Obc. obl. Lp Opis obciążenia Obc. char. kn/m 2 γ f kn/m 2
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era