Ć w i c z e n i e K 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ć w i c z e n i e K 1"

Transkrypt

1 kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis: Data: Ć w i c z e n i e K 1 Wznaczenie rzeczwistch sił wewnętrznch wstępującch w przekrojach prętów konstrukcji kratowej. 1. Wprowadzenie. Pręt kratownic wskutek działania w nich sił osiowch doznają odkształceń, a węzł przemieszczeń. Odkształcenia prętów przjmowane są jako bardzo małe w stosunku do wmiarów geometrcznch kratownic, stąd przjęto jako zasadne prawo zesztwnienia określające, że obciążenia działają na kratownicę już odkształconą w ten sposób jak i przed odkształceniem. ateriał z którego wkonane są pręt kratownic podlega prawu Hooke a, zaś odkształcenia są liniowmi funkcjami obciążeń. Struktura prętowa spełniająca powższe założenia stanowi idealn ustrój kratow. Założenia idealizujące strukturę prętową bardzo ułatwiają wprawdzie obliczenia statczne lecz jednocześnie odbiegają od rzeczwistego charakteru prac ustroju. ajbardziej odbiega od rzeczwistości założenie idealnch beztarciowch przegubów, które nigd nie jest spełnione. Pręt bowiem połączone w węzłach za pomocą nitów, spoin lub śrub nie zapewniają beztarciowego sstemu połączenia, lecz nadają mu charakter połączenia sztwnego lub sprężstego. nnmi słow rzeczwist charakter prac kratownic zbliżon jest do ustroju ramowego, w którm istotn wpłw na przemieszczenie węzłów mają wewnętrzne sił osiowe. W rzeczwistości pod wpłwem obciążenia zewnętrznego kratownica doznaje odkształcenia w wniku którego węzł ulegają przemieszczeniom obrotowm. W prętach struktur kratownic powstają zatem oprócz sił osiowch moment gnące i sił poprzeczne, które wwołują naprężenia normalne i stczne. aprężenia te w stosunku do naprężeń podstawowch (pierwszorzędnch) określanch dla idealnego ustroju kratowego (normalnch od wewnętrznch sił osiowch) noszą nazwę naprężeń drugorzędnch. m większa sztwność węzła tm większ jego odpór sprężst, a tm samm większ współcznnik sprężstego bądź w pełni sztwnego zamocowania prętu w węźle.

2 Przjmując, że o wtężeniu prętów konstrukcji kratowch decduje wartość sił osiowch i momentów gnącch, które w przekrojach prętów wwołują niejednorodn osiow stan naprężenia (mimośrodowe ściskane lub rozciągane) to dla opisu tak ukształtowanej płaszczzn stanu naprężenia, która jest nachlona do płaszczzn przekroju, wstarcz znać położenia trzech punktów na tej płaszczźnie (wartości naprężeń) które jednoznacznie ją opisują. Poniżej podano znane wzor określające dla omawianego przpadku wartości naprężeń w funkcji sił osiowej i składowch momentów gnącch przedstawionch na rsunku 1. Rs. 1. Sił wewnętrzne w przekroju kątowm pręta kratownic.

3 c g c g c g g g g (1) gdzie:,, odpowiednie wartości sił osiowej momentu gnącego ( w płaszczźnie głównej), ( w płaszczźnie głównej z),,,, wartości naprężeń w badanch punktach,,, g, g główne centralne moment bezwładności, pole przekroju pręta, E moduł ounga,,,,,, współrzędne punktów naklejenia tensometrów naprężno oporowch w odniesieniu do głównch centralnch osi bezwładności, przekroju pręta. Rozwiązując układ równań (1) względem sił wewnętrznch,, otrzmano: g J () b g J Dane dla L ,594 cm 1,66 cm J g 1,3 cm 4 k rz,15-0,981 cm -0,141 cm J g 0,33 cm 4 E, Pa 0,594 cm 0,1.66 cm 1,45 cm D -0,981 cm D 0,141 cm k 0,0

4 Dane dla L ,7 cm a 1,974 cm g,9 cm 4 1,114 cm cm g 0,75 cm 4 e 0,7 e -1,974 cm,7 cm D -1,114 cm D 0,141 cm gdzie:,, - naprężenia w badanch punktach,,,, -,, - współrzędne punktów naklejenia tensometrów w odniesieniu do osi głównch przekroju w cm, J g, J g - główne centralne momentu bezwładności w cm 4, - przekrój kątownika w cm.. Ekspermentalne wznaczenie sił wewnętrznch. elem przeprowadzenia ekspermentu wkonano kratę złożoną z kątowników równoramiennch połączonch z blachami węzłowmi prz pomoc śrub. Schemat prętow pokazuje rsunek. Rs.. Schemat prętow kratownic z lokalizacją przekrojów pomiarowch.

5 elem obliczenia składowch sił wewnętrznch wkorzstano tensometrię naprężno - oporową. Pomiar naprężeń w punktach o współrzędnch jak na rsunku 3 pozwolą na określenie sił wewnętrznch (,, ) z równań (). Pomiar należ wkonać w układzie ćwierć mostka (czujnik cznn czujnik kompensacjn). Rs.3. Opis współrzędnch punktów naklejenia tensometrów naprężno oporowch odniesionch do głównch centralnch osi bezwładności przekroju. Po dokonaniu pomiarów naprężeń w trzech punktach i wznaczeniu sił wewnętrznch można przeprowadzić analizę wników w stosunku do krat o idealnch węzłach, które momentów nie przenoszą wstępują tlko sił osiowe. Sił w prętach krat na której wkonwane bł pomiar wnoszą odpowiednio: 1 P P (moment zginające są równe zero).

6 3. Przebieg ćwiczenia: 1. Dokonać pomiaru wmiarów kratownic.. Odcztać charakterstki geometrczne kątowników : L pręt rozciągane L pręt ściskan. 3. Podłączć punkt pomiarowe do mostka tensometrcznego. 4. Zamocować kratę na masznie wtrzmałościowej i dokonać pomiarów zerowch Obciążć kratę siłą rozciągającą P < 7k i dokonać pomiarów p. 6. Obliczć odkształcenia i naprężenia ze wzorów: ε k0 3 ( ) ε E[ Pa] p 0 10 k rz 7. Wznaczć ze wzorów (1) sił wewnętrzne, i g. 8. Wniki pomiarów notować w tabeli (1). 9. Porównać otrzmane wniki sił wewnętrznej d z siłą normalną wstępującą w pręcie dla krat idealnej t. Δ d d t 100% Tabela 1. Zestawienie sił wewnętrznch w badanm pręcie. Lp. Obciążenie Punkt aprężenia Sił wewnętrzne krat pomiarow [Pa] P[] d [] [m] [m] 1 D D Siła normalna t [] t 1 P P P P

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową. Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:

Bardziej szczegółowo

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji Charakterstki geometrczne figur płaskich dr hab. inż. Tadeusz Chż Katedra Mechaniki Konstrukcji Wielkości geometrczne charakterzujące przekrój pod względem wtrzmałościowm to: pole przekroju (A), (ang.

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Badania zginanych belek

Badania zginanych belek Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2 POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Imperfekcje globalne i lokalne

Imperfekcje globalne i lokalne Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Metoda pasm skończonych płyty dwuprzęsłowe

Metoda pasm skończonych płyty dwuprzęsłowe etoda pasm skończonch płt dwuprzęsłowe Dla płt przedstawionej na rsunku należ: 1. Dla obciążenia ciężarem własnm q oraz obciążeniami p 1 i p obliczć ugięcia w punktach A i B oraz moment, i w punktach A,B

Bardziej szczegółowo

Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic

Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

OBLICZENIA STATYCZNE

OBLICZENIA STATYCZNE 1. KOSTRUKCJA DACHU Zebranie obciążeń: OBLICZEIA STATYCZE do projektu budnku magaznowego w miejscowości Chrząstowo 8, gm. akło nad otecią, dz. nr 8/8 Obciążenia stałe ciężar pokrcia dachu (płta warstwowa

Bardziej szczegółowo

KONSTRUKCJE METALOWE II

KONSTRUKCJE METALOWE II 1 POLITECHNIKA POZNAŃSKA Wdział Budownictwa, Architektur i Inżnierii Środowiska Insttut Konstrukcji Budowlanch dr inż. Jacek Tasarek KONSTRUKCJE METALOWE II POZNAŃ, 004 1.ELEMENTY ZGINANE - BELKI 1.1.Wiadomości

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid

Bardziej szczegółowo

Numeryczna i eksperymentalna analiza statyczna wpływu sztywności węzłów spawanych konstrukcji kratowych na stan ich wytężenia

Numeryczna i eksperymentalna analiza statyczna wpływu sztywności węzłów spawanych konstrukcji kratowych na stan ich wytężenia Numeryczna i eksperymentalna analiza statyczna wpływu sztywności węzłów spawanych konstrukcji kratowych na stan ich wytężenia Artur Blum, Zbigniew Rudnicki Wydz. Inżynierii Mechanicznej i Robotyki, Akademia

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1

Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, Michał Płotkowiak, Wojciech Pawłowski Poznań 2002/2003 MECHANIKA BUDOWLI 1 Olga Kopacz, Adam Łodygowski, Krzysztof Tymber, ichał Płotkowiak, Wojciech Pawłowski Poznań 00/003 ECHANIKA UDOWLI WSTĘP. echanika budowli stanowi dział mechaniki technicznej, zajmujący się statyką, statecznością

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

BADANIE TENSOMETRÓW REZYSTANCYJNYCH

BADANIE TENSOMETRÓW REZYSTANCYJNYCH . Ce ćwiczenia BADANIE TENSOMETÓW EZYSTANCYJNYCH Ceem ćwiczenia jest wznaczenie charakterstki statcznej tensometru rezstancjnego, jego podstawowch parametrów oraz błędów nieiniowości i błędów temperaturowch

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań

Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań Wytrzymałość materiałów zbiór zadań 1. Charakterystyki geometryczne przekroju pręta 1.1. Zadanie 1 Wyznaczyć położenie środka ciężkości prętów stalowych w elemencie żelbetowym przedstawionym na rysunku

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

Wytrzymałość materiałów Strength of materials

Wytrzymałość materiałów Strength of materials KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/201 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Z-LOGN Wytrzymałość materiałów Strength of materials

Z-LOGN Wytrzymałość materiałów Strength of materials KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Określenie i podział więzów

Określenie i podział więzów 3.2.1. Określenie i podział więzów Ciałem swobodnm nazwam ciało, które ma nieograniczoną swobodę ruchu. Jednak zwkle ciało materialne nie może zajmować dowolnego miejsca w przestrzeni lub poruszać się

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie

Bardziej szczegółowo

Z-LOG-0133 Wytrzymałość materiałów Strength of materials

Z-LOG-0133 Wytrzymałość materiałów Strength of materials KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów

Bardziej szczegółowo

Pomiary tensometryczne. Pomiary tensometryczne. Pomiary tensometryczne. Rodzaje tensometrów. Przygotowali: Paweł Ochocki Andrzej Augustyn

Pomiary tensometryczne. Pomiary tensometryczne. Pomiary tensometryczne. Rodzaje tensometrów. Przygotowali: Paweł Ochocki Andrzej Augustyn Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Przygotowali: Paweł Ochocki Andrzej Augustyn dr inż.. Roland PAWLICZEK Zasada działania tensometru Zasada działania tensometru F R 1

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW

RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW Kopozt RÓWNANIA FIZYCZN DLA KOMPOZYTÓW Równania fizczne dla ateriałów anizotropowch Równania fizczne liniowej teorii sprężstości ożna zapisać w ogólnej postaci ij ijkl kl lub po odwróceniu ij ijkl kl gdzie

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3

ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE. A) o trzech reakcjach podporowych N=3 ĆWICZENIE 7 Wykresy sił przekrojowych w ustrojach złożonych USTROJE ZŁOŻONE A) o trzech reakcjach podporowych N=3 B) o liczbie większej niż 3 - reakcjach podporowych N>3 A) wyznaczanie reakcji z równań

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

Modelowanie w ME- Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).

Modelowanie w ME- Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). MES1 10 S/MCS Modelowanie w ME- Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analiz Zakładam, że model już jest uproszczon, zdefiniowane są materiał, obciążenie i umocowanie (krok

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie

1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-050:000. ZałoŜenia o obiczeń.. Schemat geometrczn więźb achowej Więźba achowa płatwiowo-keszczowa... Dane ogóne Lokaizacja bunku - Biłgoraj Strefa obciąŝenia śniegiem

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

LABORATORIUM PODSTAW AUTOMATYKI

LABORATORIUM PODSTAW AUTOMATYKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA DO ĆWICZENIA 4.Wstęp - DOBÓR NASTAW REGULATORÓW opr. dr inż Krzsztof Kula Dobór nastaw regulatorów uwzględnia dnamikę obiektu jak i wmagania stawiane zamkniętemu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C

Rysunek 4.1. Odwzorowanie przez soczewkę. PołoŜenie obrazu znajdziemy, korzystając z równania (3.41). Odpowiednio dla obu powierzchni mamy O C Temat 4: Podstaw optki geometrcznej-3 Ilość godzin na temat wkładu: Zagadnienia: Cienka soczewka sferczna. Wzór soczewkow. Konstrukcja obrazu w soczewce cienkiej. Powiększenie soczewki cienkiej. Soczewka

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia

Bardziej szczegółowo

Węzeł nr 28 - Połączenie zakładkowe dwóch belek

Węzeł nr 28 - Połączenie zakładkowe dwóch belek Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.

Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych. Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8 Zinanie belek o przekroju prostokątnm i dwuteowm naprężenia normalne i stczne, projektowanie 8 Na rs. 8.1 przedstawiono belkę obciążoną momentami zinającmi w płaszczźnie x. oment nąceo dla tak obciążonej

Bardziej szczegółowo

Moduł. Profile stalowe

Moduł. Profile stalowe Moduł Profile stalowe 400-1 Spis treści 400. PROFILE STALOWE...3 400.1. WIADOMOŚCI OGÓLNE...3 400.1.1. Opis programu...3 400.1.2. Zakres programu...3 400.1. 3. Opis podstawowych funkcji programu...4 400.2.

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW

ELEMENTY MECHANIKI TECHNICZNEJ, STATYKI I WYTRZYMAŁOŚĆ MATERIAŁÓW D o u ż t k u w e w n ę t r z n e g o Katedra Inżnierii i Aparatur Przemsłu Spożwczego LMNTY MCHANIKI TCHNICZNJ, STATYKI I WYTRZYMAŁOŚĆ MATRIAŁÓW Ćwiczenia projektowe Opracowanie: Maciej Kabziński Kraków,

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,

Bardziej szczegółowo

WYZNACZANIE SIŁ W PRĘTACH MODELU KRATOWNICY PŁASKIEJ

WYZNACZANIE SIŁ W PRĘTACH MODELU KRATOWNICY PŁASKIEJ 2.1. Cel ćwiczenia Ćwiczenie 2 WYZNACZANIE SIŁ W RĘTACH MODELU KRATOWNICY ŁASKIEJ Celem ćwiczenia jest porównanie wartości sił działających w elementach modelu płaskiej kratownicy, wyznaczonych teoretycznie

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo