BADANIE TENSOMETRÓW REZYSTANCYJNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "BADANIE TENSOMETRÓW REZYSTANCYJNYCH"

Transkrypt

1 . Ce ćwiczenia BADANIE TENSOMETÓW EZYSTANCYJNYCH Ceem ćwiczenia jest wznaczenie charakterstki statcznej tensometru rezstancjnego, jego podstawowch parametrów oraz błędów nieiniowości i błędów temperaturowch w warunkach statcznch.. Wprowadzenie Tensometrem nazwa się przetwornik odkształcenia badanego obiektu wwołanego panującmi w nim naprężeniami na inną wiekość najczęściej eektrczną. Skutkiem odkształcenia tensometru jest zmiana wbranego jego parametru takiego jak rezstancja, przenikaność magnetczna, efekt piezoeektrczn, współcznnik załamania ub odbicia światła itp. W praktce popuarne są tensometrczne czujniki sił i ciśnienia, w którch na powierzchni specjanie ukształtowanch eementów sprężstch nakejone są tensometr rezstancjne. Tensometr te najczęściej pracują w układzie mostkowm zasianm z zewnętrznego stabiizowanego źródła napięcia. Sgnałem wjściowm jest zwke napięcie nierównowagi mostka. Tensometr rezstancjne mają specjaną konstrukcję umożiwiającą mocowanie na powierzchni badanego obiektu tak, ab odkształcał się wraz z tą powierzchnią. Czułość tensometru na odkształcenie (czułość odkształceniowa) zaeż od kierunku odkształcenia oraz konstrukcji tensometru. 3. Właściwości statczne tensometru Biorąc pod uwagę tensometr drutow w prętach, którego panuje naprężenie można okreśić na podstawie prawa Hooke a odkształcenie wzgędne pręta ε: ε = = () E gdzie długość pręta tensometru = F - naprężenie w pręcie, A A poe przekroju pręta, E moduł Younga. ezstancję pręta opisuje ogóna zaeżność: = ρ A () gdzie ρ - rezstancja właściwa materiału pręta, Zmianę rezstancji pręta powodowane wiekościami wpłwowmi można wznaczć obiczając różniczkę zupełną z zaeżności (): d d d ρ ρ + A da (3) stąd d A dρ ρ A d ρ A da (4)

2 Da pręta okrągłego wzgędna zmiana przekroju jest równa da dr. A r Zmiana przekroju poprzecznego pręta związana jest ze zmianą jego długości zaeżnością: da d = µ = µ ε (5) A gdzie µ - iczba Poissona; (w granicach odkształceń sprężstch da większości metai można przjmować µ = 0,3). Po uwzgędnieniu zaeżności (5) w (4) i po przekształceniach otrzmuje się da wzgędnego przrostu rezstancji tensometru: d d ρ = ε ( + µ ) + (6). ρ Dzieąc zaeżność (6) przez wzgędne wdłużenie pręta ε otrzmuje się wzór na czułość odkształceniową tensometru K zaeżną od materiału prętów tensometru: d d dρ K = = = ( + µ ) + (7). ε d ρ ε Zaeżność (7) nie uwzgędnia konstrukcji tensometru. Na przkład da tensometru drutowego zgzakowego pod działaniem jednoosiowego naprężenia w kierunku osi na pręt ukośnie oddziałuje także składowa poprzeczna naprężenia. Przrost rezstancji tensometru wwołan wdłużeniem wzgędnm ε wnosi: T = κ K ( na µ b) ε (8) gdzie a szerokość tensometru, b długość tensometru (baza tensometru), n iczba prętów w tensometrze, T κ = współcznnik zaeżn od konstrukcji tensometru i rodzaju keju, zwke P λ 0, 95 Wzgędne wdłużenia prętów tensometru zgzakowego wwołane składowmi ortogonanmi naprężeń i wnoszą odpowiednio: µ ε = (9), E µ ε = (0). E Jeśi tensometr jest naprężan jednoosiowo w kierunku osi (wted = 0) to z zaeżności (9) oraz (0) otrzmuje się da ortogonanch odkształceń: ε = () E oraz ε = µ ε (). W tabic podano przeciętne wartości modułu Younga E i współcznnika Poissona da wbranch materiałów.

3 Tabica. Materiał E µ [0 N/M ] Auminium 0,70 0,3 Miedź,8 0,35 Ołów 0,6 0,45 Sta,5 0,9 Żeazo,98 0,8 K Znajomość Parametrów E oraz µ materiału na, którm nakejone są tensometr pozwaa oszacować czułość i zakres zmienności sgnału wjściowego układu pomiarowego (najczęściej mostka złożonego z czterech tensometrów). Czułość odkształceniowa nakejonego na podłożu tensometru da jednoosiowego naprężenia jest równa: na µ b = = κ K (3). ε na b + Tensometr tpu kratowego i foiowego (rs.3.d,e) są praktcznie nieczułe na naprężenia poprzeczne. Da tego tpu tensometrów zaeżność (3) upraszcza się do postaci: K = κ K (4). Czułość odkształceniową tensometru K można wznaczć z pomiarów przrostów jego rezstancji wwołwanch zadanmi przrostami jednoosiowego naprężenia. Wkorzstując zaeżności () i (3) obicza się czułość odkształceniową K. Zmian temperatur tensometru i podłoża, na którm jest on nakejon wwodują efekt pozornego wdłużenia oraz zmian czułości tensometru. Pomijając trudne zagadnienie wpłwu temperatur na właściwości mechaniczne keju w daszm ciągu okreśa się wpłw temperatur na czułość tensometru. Wraz ze zmianą temperatur zmienia się moduł sprężstości materiału (moduł Younga E), efektem tego jest zmiana wzgędnego wdłużenia materiału ε prz niezmiennm naprężeniu. Także rezstancja tensometru zmienia się z temperaturą. Przrost rezstancji tensometru T jest praktcznie proporcjonan do przrostu temperatur T (ub ϑ da temperatur w skai Cesjusza). Jeśi temperatura tensometru zmieni się o T to rezstancja tensometru T zmieni się o wartość: T = T [ α + K ( λp λd )] T (5) gdzie α współcznnik temperaturow rezstancji materiału tensometru, λ P. współcznnik temperaturow wdłużenia podłoża, λ D współcznnik temperaturow wdłużenia prętów tensometru. Z zaeżności (5) można wznaczć pozorne wdłużenie tensometru ε (Τ) stanowiące błąd temperaturow tensometru: T ε ( T ) = = α + λp λd (6). T K K Da tensometrów wkonanch z konstantanu i nakejonch na podłożu staowm można przjąć przeciętne wartości parametrów: K =,, ρ = (0,46 0,5) 0-6 Ωm., ε ma 4 0-3, α = / C, λ p. = 0-6 / C, λ D. = / C, ε(t) = -,5 0-6 / C, oraz ε(t) / ε ma = - 0,0 %. 4. Stanowisko do badania tensometrów rezstancjnch W ćwiczeniu aboratorjnm bada się właściwości statczne tensometrów rezstancjnch nakejonch na staową bekę w układzie pomiarowm przedstawionm pogądowo na rs..

4 Wzgędne wdłużenie tensometru ε wznacza się na podstawie pomiaru strzałki ugięcia Y beki. Strzałkę tę mierz się mikromierzem 4. Beka pomiarowa ugina się pod wpłwem momentu gnącego M g wwołanego za pomocą śrub 7 napinającej bekę. Wzgędne wdłużenie beki (także tensometru) ε wznacza się z zaeżności: 4h ε = Y (7). W ćwiczeniu aboratorjnm przjmuje się, że temperatura podłoża (beki) i badanch tensometrów jest taka sama. Ab to założenie bło praktcznie spełnione badania zaeżności temperaturowch przeprowadza się prz temperaturach zmieniającch się możiwie wono. Temperaturę mierz się za pomocą układu termopar umieszczonch na bece oraz miiwotomierza. Na bece umieszczono 0 szeregowo połączonch termopar tpu Cu-konst. (STE 40 µv/ C).. Temperaturę beki pomiarowej reguuje się za pomocą autotransformatora Atr i przekładnika prądowego Ppr reguując prąd przepłwając przez bekę. 5 4 b Y h 6 3 F 7 F A I Ppr mv Atr ~ 0V s.. Stanowisko aboratorjne do badania tensometrów rezstancjnch.

5 W ćwiczeniu aboratorjnm przkładowo bada się tensometr konstantanowe drutowe o parametrach: tensometr tpu TA- 0/0 ; T = 0 Ω, toerancja rezstancji ±0,5 %, K =. T Wzgędne zmian rezstancji tensometrów można mierzć mostkiem tensometrcznm T wskaowanm w jednostkach wzgędnch [ ]. Na rs. przedstawiono uproszczon schemat mostka tensometrcznego do badania dwóch tensometrów. Aternatwn układ pomiarow poega na połączeniu tensometrów w czteroramienn (pełn) mostek, zasieniu napięciem z zasiacza stabiizowanego i pomiarze napięcia w przekątnej. Wówczas wzgędna zmiana rezstancji wznaczana jest ze stosunku napięć przekątnej pomiarowej do zasiającego z wkorzstaniem równania mostka niezrównoważonego. Parametr beki pomiarowej: materiał sta (E =, 0 N / m ), dop = 0,5 0 9 N/m, ε ma =,5 wmiar beki b = 38mm, h = 6 mm ± 0,05 mm, =90 mm ± 0, mm, =, maksmane dopuszczane ugięcie beki (strzałka ugięcia) Y ma = 300 µm., rozdzieczość mikromierza Y = ± 0, µm. Da tensometru tpu TA- 0/0 maksman wzgędn przrost rezstancji wnosi: T T = εma K =, 5 0 = 5 0 ma ' ε 4 ' DF 3 '' K 4 '' Τ Τ GS s.. Uproszczon schemat mostka tensometrcznego z detektorem fazowm. (układ da dwóch tensometrów), T, T badane tensometr; ε - potencjometr wskaowan w jednostkach wdłużenia wzgędnego ε [ ], K rezstor nastawn wskaowan w jednostkach czułości odkształceniowej K Wdłużenie wzgędne ε oraz czułość odkształceniową K tensometru nakejonego na bece wznacza się prz dwóch wartościach naprężenia beki i, którm odpowiadają w stanie równowagi mostka wartości w i w na skai ε [ ]. Wartości wzgędnego wdłużenia ε oraz czułości odkształceniowej K tensometru obicza się ze wzorów:

6 K w n i+ wi ε = (8) K gdzie K n wartość nastawiona na przełączniku mostka (można nastawić dowoną wartość np. K n =,00) wi + wi oraz K = (9). 4h Y Y 5. Ptania kontrone. Wmienić oraz scharakterzować rodzaje tensometrów rezstancjnch.. Podać wzór na czułość odkształceniową tensometru. 3. Wmienić główne źródła błędów czujników tensometrcznch.. Co oznacza iczba Poissona?. Które konstrukcje tensometrów praktcznie nie reagują na naprężenia poprzeczne? 3. Jakie właściwości fizczne powinien mieć kej do kejenia tensometrów? 4. Od czego zaeż czułość odkształceniowa tensometru? 5. Jak wpłwa kierunek naprężenia na działanie tensometru? 6. W jaki sposób można uzskać kompensację wpłwu temperatur na parametr tensometru? 7. Jak powinien bć ustuowan tensometr kompensacjn wzgędem pomiarowego? 6. Program ćwiczenia. Przeprowadzić identfikację przrządów na stanowisku aboratorjnm i zmontować układ pomiarow według wskazań prowadzącego (zastosowanie mostka procentowego/tensometrcznego rs., zastosowanie bezpośredniego pomiaru napięcia rs. b ćw.).. Po sprawdzeniu i uruchomieniu układu zbadać zaeżność W = f (Y) w temperaturze otoczenia ϑ 0 =... C da: Y = ( )µm. z krokiem np. 0 µm (ugięcie beki Y mierzć mikromierzem). Wniki pomiarów zanotować w tabei. 3. Powtórzć pomiar z pkt. da zadanch przez prowadzącego temperatur beki. 4. Na podstawie wników pomiarów uzskanch w p. wkreśić zaeżności: = f(y), ε = f(y) oraz K = f(y). 5. Wkreśić zaeżności: ( T / T ) = f(ε) oraz K = f(ε). 6. Wznaczć na podstawie zmierzonej charakterstki błąd nieiniowości tensometru δ n = f(ε). 7. Zbadać zaeżność temperaturową K = f(ϑ) ε = const par tensometrów da odkształceń z przedziału wartości zmierzonch w p.. 8. Wkreśić zaeżność błędu wzgędnego czułości od temperatur: δ K = f(ϑ) ε = const. 9. Dokonać anaogicznego opracowania na podstawie pomiarów rezstancji omomierzem. 0. Wprowadzić wnioski z przeprowadzonch badań i uzskanch rezutatów. i+ i

Ć w i c z e n i e K 1

Ć w i c z e n i e K 1 kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

Ćw. 4. Wyznaczanie modułu Younga z ugięcia

Ćw. 4. Wyznaczanie modułu Younga z ugięcia KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga z ugięcia Wprowadzenie Ze wzgędu na budowę struktury cząsteczkowej, ciała stałe możemy podzieić na amorficzne oraz

Bardziej szczegółowo

Badania zginanych belek

Badania zginanych belek Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia

Bardziej szczegółowo

BADANIA STANU ODKSZTAŁCENIA ZA POMOCĄ METODY TENSOMETRII REZYSTANCYJNEJ

BADANIA STANU ODKSZTAŁCENIA ZA POMOCĄ METODY TENSOMETRII REZYSTANCYJNEJ Jarosław FILIPIAK BADANIA STAN ODKSZTAŁCENIA ZA POMOCĄ METODY TENSOMETII EZYSTANCYJNEJ Metoda tensometrii rezstancjnej jest stosowana do pomiaru odkształceń zarówno obiektów badanch w warunkach laboratorjnch

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ GAUSSA Ćwiczenie WYZNACZANIE MOUŁU SZTYWNOŚCI METOĄ YNAMICZNĄ GAUSSA.1. Wiadomości ogóne Pod wpływem sił zewnętrznych ciała stałe uegają odkształceniom tzn. zmieniają swoje wymiary oraz kształt. Jeżei po usunięciu

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 8 WYBOCZENIE PRĘTÓW ŚCISKANYCH Cel ćwiczenia LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 8 WYBOCZENIE RĘTÓW ŚCISKANYCH 8.1. Ce ćwiczenia Ceem ćwiczenia jest doświadczane wyznaczenie siły krytycznej pręta ściskanego podpartego przegubowo na obu

Bardziej szczegółowo

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową.

Ć w i c z e n i e K 2 a Wyznaczanie siły krytycznej pręta o przekroju prostokątnym posiadającego krzywiznę początkową. Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grua nr: Ocena:

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania

Bardziej szczegółowo

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią

ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju

Bardziej szczegółowo

Pomiary tensometryczne. Pomiary tensometryczne. Pomiary tensometryczne. Rodzaje tensometrów. Przygotowali: Paweł Ochocki Andrzej Augustyn

Pomiary tensometryczne. Pomiary tensometryczne. Pomiary tensometryczne. Rodzaje tensometrów. Przygotowali: Paweł Ochocki Andrzej Augustyn Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Przygotowali: Paweł Ochocki Andrzej Augustyn dr inż.. Roland PAWLICZEK Zasada działania tensometru Zasada działania tensometru F R 1

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

LABORATORIUM PODSTAW AUTOMATYKI

LABORATORIUM PODSTAW AUTOMATYKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA DO ĆWICZENIA 4.Wstęp - DOBÓR NASTAW REGULATORÓW opr. dr inż Krzsztof Kula Dobór nastaw regulatorów uwzględnia dnamikę obiektu jak i wmagania stawiane zamkniętemu

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W TARNOWIE INSTYTUT POLITECHNICZNY LABORATORIUM METROLOGII Instrukcja do wykonania ćwiczenia laboratoryjnego: POMIARY TENSOMETRYCZNE CZUJNIKI I APARATURA Tarnów 014 POMIARY

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie

1.3. Dane materiałowe wartości charakterystyczne (PN-B-03150:2000, Załącznik normatywny Z-2.2.3) f m.k = 30 MPa - wytrzymałość na zginanie I. OBLICZENIA WIĘŹBY DACHOWEJ wg PN-B-050:000. ZałoŜenia o obiczeń.. Schemat geometrczn więźb achowej Więźba achowa płatwiowo-keszczowa... Dane ogóne Lokaizacja bunku - Biłgoraj Strefa obciąŝenia śniegiem

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

Laboratorium Podstaw Metrologii

Laboratorium Podstaw Metrologii WOCŁAW Wrocław, dnia Laboratorium odstaw Metroogii Ćwiczenie o i ierune studiów... Grupa (dzień tygodnia i godzina rozpoczęcia zajęć) Imię i nazwiso Imię i nazwiso Imię i nazwiso rzetwornii Badanie właściwości

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA PODCZAS SKRAPLANIA PARY

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi:

Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi: Wydział: EAIiE Kierunek: Imię i nazwisko (e-mail): ok: 201 /201 Grupa: Zespół: Data wykonania: Zaliczenie: LABOATOIUM METOLOGII Ćw. 10: Mostki prądu przemiennego Podpis prowadzącego: Uwagi: Wstęp Celem

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Zginanie ze ściskaniem

Zginanie ze ściskaniem Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej

Bardziej szczegółowo

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki piezorezystancyjne dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki działające w oparciu o efekt Tensometry,

Bardziej szczegółowo

ĆWICZENIE 6b POMIARY SIŁ. Celem ćwiczenia jest poznanie budowy, zasady działania i właściwości metrologicznych tensometrycznego przetwornika siły.

ĆWICZENIE 6b POMIARY SIŁ. Celem ćwiczenia jest poznanie budowy, zasady działania i właściwości metrologicznych tensometrycznego przetwornika siły. ĆWICZEIE 6b POMIAY SIŁ 8.1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie budowy, zasady działania i właściwości metrologicznych tensometrycznego przetwornika siły. 8.2. WPOWADZEIE 8.2.1. Efekt tensometryczny

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLTECHK OPOLSK STYTT TOMTYK FOMTYK LBOTOM METOLO ELEKTOCZEJ 1. POMY EZYSTCJ METODM MOSTKOWYM 1. METODY POM EZYSTCJ 1.1. Wstęp 1.1.1 Metody techniczne 1.1.1.1.kład poprawnie mierzonego napięcia kład poprawnie

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

SERIA II ĆWICZENIE 2_3. Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia:

SERIA II ĆWICZENIE 2_3. Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia: SE ĆWCZENE 2_3 Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia: 1. Sposoby pomiaru rezystancji. ezystancję można zmierzyć metodą bezpośrednią, za pomocą

Bardziej szczegółowo

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego

19. Wybrane układy regulacji Korekcja nieliniowa układów. Przykład K s 2. Rys Schemat blokowy układu oryginalnego 19. Wbrane układ regulacji Przkład 19.1 19.1. Korekcja nieliniowa układów w K s 2 Rs. 19.1. Schemat blokow układu orginalnego 1 Zbadać możliwość stabilizacji układu za pomocą nieliniowego prędkościowego

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 4 Badanie masowych momentów bezwładności Ce ćwiczenia Wyznaczanie masowego momentu bezwładności bryły metodą

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem

Bardziej szczegółowo

2. Pręt skręcany o przekroju kołowym

2. Pręt skręcany o przekroju kołowym 2. Pręt skręcany o przekroju kołowym Przebieg wykładu : 1. Sformułowanie zagadnienia 2. Warunki równowagi kąt skręcenia 3. Warunek geometryczny kąt odkształcenia postaciowego 4. Związek fizyczny Prawo

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy

Stosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METOLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 13, wykład nr 0 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

Elementy oporowe tensometryczne

Elementy oporowe tensometryczne Elementy oporowe tensometryczne Tensometrem oporowym nazywamy element rezystancyjny, w którym zmiana rezystancji następuje pod wpływem oddziaływań zewnętrznych rozciągających lub ściskających. Tensometr

Bardziej szczegółowo

Próba statyczna zwykła rozciągania metali

Próba statyczna zwykła rozciągania metali Próba statyczna zwykła rozciągania metai Opracował: XXXXXXX stdia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 1 r. Wprowadzenie Podstawową próbą badań własności mechanicznych metai jest próba

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego

Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego Wahadło torsyjne ównanie ruchu obrotowego krążka d α I dt M M Dα I moment bezwładności krążka M moment siły D moment kierujący r drut d α

Bardziej szczegółowo

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

Wyznaczanie wielkości oporu elektrycznego różnymi metodami Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW

RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW Kopozt RÓWNANIA FIZYCZN DLA KOMPOZYTÓW Równania fizczne dla ateriałów anizotropowch Równania fizczne liniowej teorii sprężstości ożna zapisać w ogólnej postaci ij ijkl kl lub po odwróceniu ij ijkl kl gdzie

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego

Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego Wyznaczenie momentu bezwładności przy użyciu wahadła torsyjnego Wahadło torsyjne ównanie ruchu obrotowego krążka d α I dt M M Dα I moment bezwładności krążka M moment siły D moment kierujący r drut d α

Bardziej szczegółowo

LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA.

LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. 1. Wprowadzenie LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. W przemyśle (także w praktyce laboratoryjnej) pomiary ciśnienia oprócz pomiarów temperatury należą do najczęściej

Bardziej szczegółowo

Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł

Sił Si y y w ewnętrzne (1)(1 Mamy my bry r łę y łę mate t r e iralną obc ob iążon ż ą u kła k de d m e si m ł si ł echanika ogóna Wykład nr 5 Statyczna wyznaczaność układu. Siły wewnętrzne. 1 Stopień statycznej wyznaczaności Stopień zewnętrznej statycznej wyznaczaności n: Beka: n=rgrs; Rama: n=r3ogrs; rs; Kratownica:

Bardziej szczegółowo

Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem tensometrii elektrooporowej. KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU

Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem tensometrii elektrooporowej. KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA KOMPUTEROWE WSPOMAGANIE EKSPERYMENTU Instrukcja do ćwiczeń laboratoryjnych Analiza drgań belki utwierdzonej na podstawie pomiarów z zastosowaniem

Bardziej szczegółowo

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

E12. Mostek Wheatstona wyznaczenie oporu właściwego

E12. Mostek Wheatstona wyznaczenie oporu właściwego E1. Mostek Wheatstona wyznaczenie oporu właściwego Marek Pękała Wstęp Zgodnie z prawem Ohma natężenie I prądu płynącego przez przewodnik / opornik jest proporcjonalne do napięcia przyłożonego do jego końców.

Bardziej szczegółowo

Tensometria elektrooporowa

Tensometria elektrooporowa Tensometria elektrooporowa Tensometry elektrooporowe charakteryzują się oporem elektrycznym zależnym od odkształcenia czujnika. Są najpowszechniej używanymi czujnikami do pomiaru wielkości mechanicznych.

Bardziej szczegółowo

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POMIAR KĄTA SKRĘCENIA LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćwiczenie 7 WYZNACZANIE ODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G PRZEZ POIAR KĄTA SKRĘCENIA 7.1. Wprowadzenie - pręt o przekroju kołowym W pręcie o przekroju kołowym, poddanym

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integraność konstrukcji Wykład Nr 2 Inżynierska i rzeczywista krzywa rozciągania Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.p/dydaktyka/imir/index.htm

Bardziej szczegółowo

UOGÓLNIONE PRAWO HOOKE A

UOGÓLNIONE PRAWO HOOKE A UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem.

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem Tab Wyniki i błędy pomiarów U [V] U [V] f [Hz] U [V] δ U

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

Tensometria rezystancyjna. oprac. dr inż. Ludomir J. Jankowski

Tensometria rezystancyjna. oprac. dr inż. Ludomir J. Jankowski Tensometria rezystancyjna oprac. dr inż. Ludomir J. Jankowski Wrocław, 2015 Tensometria rezystancyjna - podstawy Doświadczalna analiza naprężeń występujących w konstrukcjach mechanicznych (elementach maszyn

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INFOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

6.1. Wstęp Cel ćwiczenia

6.1. Wstęp Cel ćwiczenia Temat 4 ( godziny): Tensometria elektrooporowa 6.. Wstęp W dziedzinie konstrukcji maszyn szczególnej doniosłości i praktycznego znaczenia nabrała w ostatnich latach doświadczalna analiza naprężeń. Bardzo

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład

Bardziej szczegółowo

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

Badanie rezystancji zestykowej

Badanie rezystancji zestykowej Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze

Bardziej szczegółowo